

NTP-IEC 62305-2 v2015

Fundamentos de la Ingeniería Eléctrica (Universidad del Bío-Bío)

Escanea para abrir en Studocu

NORMA TÉCNICA **PERUANA**

NTP-IEC 62305-2 2015

Dirección de Normalización - INACAL Calle Las Camelias 815, San Isidro (Lima 27)

Lima, Perú

Protección contra el rayo. Parte 2: Evaluación del riesgo

Protection against lightning - Part 2: Risk Management

(EQV. IEC 62305-2 ed 2.0 (2010-12) Protection against lightning - Part 2: Risk Management)

2015-12-11 1ª Edición

R.N°011-2015-INACAL/DN. Publicada el 2015-12-25

Precio basado en 121 páginas

I.C.S.: 29.020; 91.120.40

ESTA NORMA ES RECOMENDABLE

Descriptores: Protección contra el rayo, instalaciones eléctricas, protección para asegurar la seguridad, seguridad

© IEC 2010 - © INACAL 2015

Todos los derechos son reservados. A menos que se especifique lo contrario, ninguna parte de esta publicación podrá ser reproducida o utilizada por cualquier medio, electrónico o mecánico, incluyendo fotocopia o publicándolo en el Internet o intranet, sin permiso por escrito del INACAL, único representante de la IEC en territorio peruano.

© INACAL 2015

Todos los derechos son reservados. A menos que se especifique lo contrario, ninguna parte de esta publicación podrá ser reproducida o utilizada por cualquier medio, electrónico o mecánico, incluyendo fotocopia o publicándolo en el internet o intranet, sin permiso por escrito del INACAL.

INACAL

Calle Las Camelias 815, San Isidro Lima- Perú Tel.: +51 1 640-8820 administracion@inacal.gob.pe

www.inacal.gob.pe

i

ÍNDICE

	p	ágina
	ÍNDICE	ii
	PREFACIO	iii
	PRÓLOGO	v
	INTRODUCIÓN	viii
1.	OBJETO Y CAMPO DE APLICACIÓN	1
2.	REFERENCIAS NORMATIVAS	1
3.	TÉRMINOS, DEFINICIONES, SÍMBOLOS Y ABREVIATURAS	2
4.	EXPLICACIÓN DE LOS TÉRMINOS	17
5.	GESTIÓN DE LOS RIESGOS	25
6.	ESTIMACIÓN DE LAS COMPONENTES DEL RIESGO	32
	ANEXO A (INFORMATIVO) - Evaluación del número anual n de sucesos peligrosos	41
	ANEXO B (INFORMATIVO) - Evaluación de la probabilidad de daños px en una estructura	53
	ANEXO C (INFORMATIVO) - Evaluación de la magnitud de las pérdidas lx	67
	ANEXO D (INFORMATIVO) – Evaluación del costo de las pérdidas	79
	ANEXO E (INFORMATIVO) – Estudios de caso	81
	BIBLIOGRAFÍA	121

ii

PREFACIO

A. RESEÑA HISTÓRICA

- A.1 La presente Norma Técnica Peruana ha sido elaborada por el Comité Técnico de Seguridad eléctrica, Sub Comité Técnico de Normalización de Protección contra el rayo, mediante el Sistema 1 o de Adopción, durante los meses de abril a mayo de 2015, utilizando como antecedente a la Norma IEC 62305-2 ed 2.0 (2010-12) Protection against lightning Part 2: Risk Management.
- A.2 El Comité Técnico de Normalización de Seguridad eléctrica, Sub Comité Técnico de Normalización de Protección contra el rayo presentó a la Dirección de Normalización –DN-, con fecha 2015-10-20, el PNTP-IEC 62305-2:2015, para su revisión y aprobación, siendo sometido a la etapa de discusión pública el 2015-11-06. No habiéndose presentado observaciones fue oficializada como Norma Técnica Peruana NTP-IEC 62305-2:2015 Protección contra el rayo. Parte 2: Evaluación del riesgo, 1ª Edición, el 25 de diciembre de 2015.
- A.3 Esta Norma Técnica Peruana es una adopción de la Norma IEC 62305-2:2010 ed 2.0. La presente Norma Técnica Peruana presenta cambios editoriales referidos principalmente a terminología propia del idioma español y ha sido estructurada de acuerdo a las Guías Peruanas GP 001:1995 y GP 002:1995.

B. INSTITUCIONES QUE PARTICIPARON EN LA ELABORACIÓN DE LA NORMA TÉCNICA PERUANA

Secretaría DIRECCIÓN GENERAL DE

ELECTRICIDAD DEL

MINISTERIO DE ENERGÍA Y

MINAS

Secretario Orlando Chávez Chacaltana

Coordinador Luis Alberto Arellán Yanac

iii

ENTIDAD

REPRESENTANTES

Roberto Prieto Sánchez Ministerio de Vivienda Construcción y Saneamiento Yessenia Lugo Chávez

Asociación Electrotécnica Peruana Justo Yanque Montufar

Pontificia Universidad Católica del Perú Raúl Del Rosario Quinteros

Oscar Melgarejo

PARA RAYOS S.A.C. Flavio Tito Fuentes

Jorge Hurtado Quispe

Richard Verástegui Vilcahuamán **PROMELSA**

Corporación Selectronics S.A.C. Orlando E. Ardito Chávez

Jorge Noé Rondón

Thompson Lighthing Protection Inc. Lizardo López Ingunza

SENATI Sergio Takuman Kiyota

---0000000---

COMISIÓN ELECTROTÉCNICA INTERNACIONAL

PROTECCIÓN CONTRA EL RAYO

PARTE 2: EVALUACIÓN DEL RIESGOS

PRÓLOGO

- La Comisión Electrotécnica Internacional (IEC por sus siglas en inglés) es una organización mundial de normalización que comprende todos los comités electrotécnicos nacionales (Comités Nacionales de la IEC). El objeto de la IEC es promover la cooperación internacional en todas las cuestiones relativas a la normalización en los campos eléctricos y electrónicos. Con este fin, y además de otras actividades, la IEC publica Normas Internacionales, Especificaciones Técnicas, Informes Técnicos, Especificaciones Públicamente Disponibles (PAS por sus siglas en inglés) y Guías (en lo sucesivo "Publicación (es) de la IEC"). Su preparación está a cargo de los comités técnicos; cualquier Comité Nacional de la IEC interesado en el tema tratado, podrá participar en este trabajo preparatorio. Las organizaciones internacionales, gubernamentales y no gubernamentales vinculadas con la IEC también participan en esta preparación. La IEC colabora estrechamente con la Organización Internacional de Normalización (ISO por sus siglas en inglés), de conformidad con las condiciones determinadas por acuerdo entre las dos organizaciones.
- 2) Las decisiones formales o acuerdos de la IEC sobre cuestiones técnicas expresan, lo más aproximadamente posible, un consenso internacional de opinión sobre los temas relevantes ya que cada comité técnico, tiene la representación de todos los Comités Nacionales de la IEC interesados.
- 3) Las Publicaciones de la IEC tienen la forma de recomendaciones para uso internacional y son aceptados por los Comités Nacionales de la IEC en ese sentido. Mientras que se hacen todos los esfuerzos razonables para asegurar que el contenido técnico de las Publicaciones IEC es exacta, la IEC no se hace responsable de la forma en que se utilizan o de cualquier mala interpretación por cualquier usuario final.
- 4) Con el fin de promover la uniformidad internacional, los Comités Nacionales de la IEC se comprometen a aplicar las Publicaciones de la IEC de forma transparente en la mayor medida posible en sus publicaciones nacionales y regionales. Cualquier divergencia entre alguna publicación IEC y la publicación nacional o regional correspondiente será indicada claramente en la segunda.
- 5) La misma IEC no proporciona ninguna evaluación de la conformidad. Los organismos de certificación independientes proporcionan servicios de evaluación de la conformidad y, en algunas zonas, el acceso a las marcas de conformidad de la IEC. La IEC no es responsable de los servicios llevados a cabo por organismos de certificación independientes.
- 6) Todos los usuarios deben asegurarse de que tienen la última edición de esta publicación.
- 7) Ninguna responsabilidad recaerá en la IEC o en sus directores, empleados, funcionarios o agentes incluidos los expertos individuales y los miembros de sus comités técnicos y los Comités Nacionales de la IEC por cualquier daño personal, daño material u otros daños de cualquier naturaleza, ya sean directos o indirectos, o por los gastos (incluyendo tasas legales) y gastos derivados de la publicación, uso o dependencia, de esta publicación de la IEC o de otras Publicaciones de la IEC.
- 8) Se llama la atención sobre las referencias normativas citadas en esta publicación. El uso de las publicaciones de referencia es indispensable para la correcta aplicación de la presente publicación.
- 9) Se llama la atención a la posibilidad de que algunos de los elementos de esta publicación de la IEC puedan ser objeto de derechos de patente. La IEC no se hace responsable por la identificación de alguno o todos los derechos de patente.

La Norma internacional IEC 62305-2 ha sido preparado por el comité técnico 81 de la IEC: Protección contra el rayo.

Esta segunda edición anula y sustituye a la primera edición, publicada en el 2006, y que constituye una revisión técnica.

Esta edición incluye los siguientes cambios técnicos significativos con respecto a la edición anterior:

v

- La evaluación de riesgos para los servicios relacionados con las estructuras se excluye del objeto y campo de aplicación.
- Se consideran lesiones a seres vivos causados por una descarga eléctrica en el interior de la estructura.
- El riesgo tolerable de pérdida del patrimonio cultural se baja de 10⁻³ a 10⁻ ⁴. El valor del riesgo tolerable de pérdida de valor económico ($R_T = 10^{-3}$) se introduce, para ser utilizado cuando los datos para el análisis de costo / beneficio no estén disponibles.
- Se considera el daño extendido al entorno de las estructuras o al medio 4) ambiente.
- 5) Se proporcionan ecuaciones mejoradas para la evaluación de
- zonas de recolección relacionados a los destellos cerca de una estructura,
- zonas de recolección relacionados a los destellos y cercana a una línea,
- las probabilidades de que un destello puede causar daños,
- factores de pérdidas incluso en estructuras con riesgo de explosión,
- riesgo relacionado a una zona de una estructura,
- costo de la pérdida.
- Las tablas se proporcionan para seleccionar el importe relativo de pérdida 6) en todos los casos.
- El impulso soportado del nivel de tensión de los equipos se extendió 7) hasta 1 kV

El texto de esta norma se basa en los siguientes documentos:

FDIS	Informe sobre la votación
81/371 / FDIS	81/381 / RVD

La información completa sobre la votación para la aprobación de esta norma se puede encontrar en el informe sobre la votación que se indica en la tabla anterior.

La versión francesa de esta norma no se ha votado

Esta publicación ha sido redactada de acuerdo con las Directivas ISO / IEC, Parte 2.

Una lista de todas las partes de la serie IEC 62305, bajo el título general de Protección contra el rayo, se puede encontrar en el sitio web de la IEC.

El comité ha decidido que el contenido de esta publicación se mantendrá sin cambios hasta la fecha de estabilidad indicado en el sitio web de la IEC en "http://webstore.iec.ch" en los datos relacionados con la publicación específica. En esta fecha, la publicación será

- reconfirmada,
- retirada,
- sustituida por una edición revisada, o
- modificada.

Una versión bilingüe de esta norma podrá ser publicada en una fecha posterior.

INTRODUCCIÓN

Los destellos de rayos que caen en tierra pueden ser peligrosos para las estructuras y las líneas.

El peligro a una estructura puede dar lugar a

- daños a la estructura y su contenido,
- falla de los sistemas eléctricos y electrónicos asociados,
- lesiones a los seres vivos en o cerca de la estructura.

Efectos consecuentes de los daños y fallas pueden extenderse a los alrededores de la estructura o pueden implicar su medio ambiente.

Para reducir la pérdida debido a rayos, pueden ser necesarias medidas de protección. Ya sea que se necesiten, y en qué medida, deben ser determinados por la evaluación de riesgos.

El riesgo, definido en esta parte de la Norma IEC 62305 como la pérdida promedio anual probable en una estructura debido a los destellos de rayos, depende de:

- el número anual de destellos de rayos que influyen en la estructura;
- la probabilidad de daños por uno de los destellos de rayos que influyen;
- el importe medio de pérdida consecuente.

Los destellos de rayos que influyen en la estructura se pueden dividir en

- destellos que terminan en la estructura,
- destellos que cerca de la estructura, directo a las líneas conectadas (potencia, líneas de telecomunicaciones,) o cerca de las líneas.

Los destellos en la estructura o una línea conectada pueden causar daños físicos y peligros a la vida. Los destellos cerca de la estructura o de la línea, así como destellos en la estructura o línea pueden provocar la falla de los sistemas eléctricos y electrónicos debido a las sobretensiones resultantes de acoplamiento resistivo e inductivo de estos sistemas con la corriente del rayo.

Por otra parte, las fallas causadas por sobretensiones de rayos en las instalaciones de los usuarios y en las líneas de alimentación de potencia también pueden generar sobretensiones de tipo conmutación en las instalaciones.

viii

NOTA: El mal funcionamiento de los sistemas eléctricos y electrónicos no está cubierto por la serie IEC 62305. Se debe hacer referencia a la norma IEC 61000-4-5 [1]1.

El número de destellos de rayos que influyen en la estructura depende de las dimensiones y las características de la estructura y de las líneas conectadas, de las características ambientales de la estructura y las líneas, así como sobre la densidad de destello de rayo a tierra en la región donde la estructura y las líneas se localizan.

La probabilidad de daños causados por rayos depende de la estructura, las líneas conectadas, y las características de corriente de rayo, así como del tipo y la eficacia de las medidas de protección aplicadas.

El importe medio anual de la pérdida consecuente depende de la magnitud de los daños y los efectos indirectos que pueden ocurrir como resultado de un destello de rayo.

El efecto de las medidas de protección resulta de las características de cada medida de protección y puede reducir las probabilidades de daño o el importe de pérdida consecuente.

La decisión de proporcionar protección contra el rayo se puede tomar independientemente de los resultados de la evaluación del riesgo donde se desea que no haya riesgo evitable.

_

¹ Las figuras entre corchetes se refieren a la bibliografía.

Protección contra el rayo. Parte 2: Evaluación del riesgo

OBJETO Y CAMPO DE APLICACIÓN 1.

Esta parte de la Norma IEC 62305 se aplica a la evaluación del riesgo en una estructura o en un servicio por la acción de las descargas del rayo a tierra.

Su propósito es proporcionar un procedimiento de evaluación del riesgo. Una vez se ha seleccionado un límite superior de riesgo tolerable, este procedimiento permite la selección de las medidas de protección adecuadas para reducir el riesgo al límite tolerable o a un valor inferior.

REFERENCIAS NORMATIVAS 2.

Las normas que a continuación se indican son indispensables para la aplicación de esta norma. Para las referencias con fecha, sólo se aplica la edición citada. Para las referencias sin fecha se aplica la última edición de la norma (incluyendo cualquier modificación de ésta).

IEC 62305-1*	Protección contra el rayo. Parte 1: Principios generales
IEC 62305-3*	Protección contra el rayo. Parte 3: Daños físicos en las estructuras y riesgos para la vida
IEC 62305-4*	Protección contra el rayo. Parte 4: Sistemas eléctricos y electrónicos en las estructuras

^{*} La NTP-IEC 62305-1:2015 es equivalente a la Norma IEC 62305-1:2010.

^{*} La NTP-IEC 62305-3:2015 es equivalente a la Norma IEC 62305-3:2010.

^{*} La NTP-IEC 62305-4:2015 es equivalente a la Norma IEC 62305-4:2010.

3. TÉRMINOS, DEFINICIONES, SÍMBOLOS Y ABREVIATURAS

Para el objeto de este documento, se aplican los siguientes términos, definiciones, símbolos y abreviaturas, algunas de las cuales se han citado en la Parte 1, pero que se repiten aquí para mayor facilidad de lectura, siendo también de aplicación las definiciones que se incluyen en las otras partes de la Norma IEC 62305.

3.1 Términos y definiciones

3.1.1 Estructura a proteger:

Estructura para la que se requiere una protección contra los efectos del rayo de acuerdo con esta Norma Técnica Peruana.

NOTA: Una estructura a proteger puede formar parte de una estructura mayor.

3.1.2 Estructuras con riesgo de explosión:

Estructura que contiene materiales explosivos sólidos o zonas peligrosas tal como se determina en las Normas IEC 60079-10 [2] e IEC 61241-10. [3]

3.1.3 Estructuras peligrosas para el medio ambiente:

Estructura que, como consecuencia del rayo, pueden producir emisiones biológicas, químicas o radiactivas (tales como plantas químicas, petroquímicas, nucleares, etc.).

3.1.4 Ambiente urbano

Zona con gran densidad de edificios o densamente poblada con edificios de gran altura.

NOTA: El centro de una ciudad es un ejemplo de un ambiente urbano.

3.1.5 Ambiente suburbano

Zona con una densidad media de edificios.

NOTA: Las zonas periféricas son un ejemplo de un ambiente suburbano.

3.1.6 Ambiente rural

Zona con una densidad baja de edificios.

NOTA: Una zona rural es un ejemplo de un ambiente rural.

3.1.7 Tensión de impulso soportada nominal, U_w

Tensión de impulso soportada dada por el fabricante al equipo o a una parte del equipo, que caracteriza la capacidad especifica de su aislamiento para soportar sobretensiones (transitorias).

[IEC 60664-1:2007, definición 3.9.2, modificada] [4]

NOTA: Para los propósitos de esta parte de la norma IEC 62305, sólo se considera la tensión soportada nominal entre las partes conductoras activas y tierra.

3.1.8 Sistema eléctrico

Sistema formado por los componentes de alimentación de energía (potencia) en baja tensión.

3.1.9 Sistema electrónico

Sistema formado por componentes electrónicos sensibles tales como, equipos de comunicación, computadoras, sistemas de control e instrumentación, sistemas de radio, instalaciones electrónicas de potencia.

3.1.10 Sistemas internos

Sistemas eléctricos y electrónicos situados en el interior de la estructura.

3.1.11 Línea

Línea de Energía o de Telecomunicaciones conectada a la estructura a ser protegida.

3.1.12 Líneas de telecomunicación

Líneas destinadas a la comunicación entre equipos que puede estar localizadas en estructuras separadas, tales como líneas telefónicas y líneas de datos.

3.1.13 Líneas de energía (potencia)

Líneas de distribución que suministran energía eléctrica a una estructura y a los equipos eléctricos y electrónicos situados en ella, tales como redes de baja tensión (BT) y redes de alta tensión (MT y AT).

3.1.14 Evento peligroso

Descarga atmosférica en la estructura a proteger o en sus proximidades, o en una línea conectada a la estructura a proteger o en sus proximidades, que puede causar daños.

3.1.15 Descarga de un rayo en una estructura

Descarga que impacta directamente en la estructura a proteger.

3.1.16 Descarga próxima a una estructura

Impacto de la descarga suficientemente próximo a la estructura a proteger que puede producir sobretensiones peligrosas.

3.1.17 Descarga en una línea

Descarga que impacta directamente en una línea conectada a la estructura a proteger.

3.1.18 Descarga próxima a una línea

Impacto de la descarga suficientemente próximo a una línea conectada a la estructura a proteger que puede producir sobretensiones peligrosas.

3.1.19 Número de eventos peligrosos por descargas en una estructura, ND

Valor promedio anual de posibles eventos peligrosos por descargas atmosféricas en una estructura.

3.1.20 Número de eventos peligrosos por descargas en una línea, N_L

Valor promedio anual de posibles eventos peligrosos por descargas atmosféricas en una línea.

3.1.21 Número de eventos peligrosos por descargas próximas a una estructura, N_M

Valor promedio anual de posibles eventos peligrosos por descargas atmosféricas próximas a una estructura.

3.1.22 Número de eventos peligrosos por descargas próximas a un servicio, N₁

Valor promedio anual de posibles eventos peligrosos por descargas atmosféricas próximas a una línea.

3.1.23 Impulso electromagnético del rayo, IEMR (LEMP):

Efectos electromagnéticos de la corriente del rayo a través del acoplamiento resistivo, inductivo y capacitivo, que crea sobretensiones y campos electromagnéticos.

3.1.24 Onda tipo impulso:

Onda transitoria que aparece como una sobretensión y/o una sobreintensidad producida por el IEMR (LEMP).

3.1.25 Nodo

Punto de una línea en el que la propagación de una onda tipo impulso se considera despreciable.

NOTA: Ejemplos de nodos son el punto de conexión de un derivación de una línea de distribución de energía (potencia) a un transformador AT/BT, a un intercambio de telecomunicaciones (por ejemplo, un multiplexor de una línea de telecomunicación o un equipo de xDSL) instalado en la línea de telecomunicaciones.

3.1.26 Daño físico:

Daño en la estructura (o en su contenido) o en el servicio debido a los efectos mecánicos, térmicos, químicos o explosivos de la descarga del rayo.

3.1.27 Daños en los seres vivos:

Daños permanentes, incluida la muerte, de las personas o de los animales, debidas a las tensiones de toque y de paso producidas por el rayo.

NOTA: Aunque los seres vivos pueden ser heridos de otras maneras, en esta parte de la norma IEC 62305 el término "daño" está limitado a la amenaza debida a un choque eléctrico (tipo de daño D1).

3.1.28 Falla de los sistemas eléctricos y electrónicos

Daño permanente de los sistemas eléctricos y electrónicos debidos a los efectos electromagnéticos del rayo.

3.1.29 Probabilidad de daño, P_x

Probabilidad de que un evento peligroso produzca daños en la o dentro de la estructura a proteger.

3.1.30 Pérdidas, L_x

Cantidad promedio de pérdidas (personas y bienes) correspondientes a un tipo específico de daño por un evento peligroso, respecto al valor (personas y bienes) de la estructura a proteger.

3.1.31 Riesgo, R

Valor promedio de las pérdidas anuales probables (personas y bienes) debido al rayo, respecto al valor total (personas y bienes) de la estructura a proteger.

3.1.32 Componente del riesgo, R_x

Riesgo parcial que depende de la fuente y del tipo del daño.

3.1.33 Riesgo tolerable, R_T

Valor máximo del riesgo que puede admitirse para la estructura a proteger.

3.1.34 Zona de una estructura, Z_S

Parte de una estructura con características homogéneas en la que se emplea sólo un conjunto de parámetros para evaluar una componente del riesgo.

3.1.35 Sección de una línea, S_L

Parte de una línea con características homogéneas en la que se emplea sólo un conjunto de parámetros para evaluar una componente del riesgo.

3.1.36 Zona de protección contra el rayo, ZPR (LPZ)

Zona en la que está definido el ambiente electromagnético del rayo.

NOTA: Los límites de una ZPR (LPZ) no son necesariamente los límites físicos (por ejemplo, paredes, techos y suelos).

3.1.37 Nivel de protección contra el rayo, NPR (LPL)

Cifra relacionada con un conjunto de parámetros de la corriente del rayo y relativa a la probabilidad de que los valores máximos y mínimos de diseño asociados (previstos) no sean sobrepasados cuando ocurran tormentas naturales.

NOTA: Se emplea un nivel de protección contra el rayo para diseñar las medidas de protección de acuerdo al conjunto de los parámetros de la corriente del rayo.

3.1.38 Medidas de protección

Medidas a tomar en la estructura a proteger con el fin de reducir el riesgo.

3.1.39 Protección contra el rayo, PCR (LP)

Sistema completo para la protección de las estructuras contra la descarga del rayo, incluyendo su sistema interno y su contenido, así como las personas, en general consiste de un sistema de protección contra el rayo SPCR y un sistema de protección contra el impulso electromagnético SMPI.

3.1.40 Sistema de protección contra el rayo, SPCR (LPS)

Instalación completa destinada a reducir los peligros de daños físicos debidos a los impactos directos de los rayos en la estructura.

NOTA: Está formada por los sistemas externos e internos de protección contra el rayo.

3.1.41 Sistema de medidas de protección contra el IEMR, SMPI (SPM)

Conjunto de medidas de protección contra el IEMR para proteger los sistemas internos.

NOTA: Este es parte de todo el Sistema de protección contra el rayo.

3.1.42 Pantalla magnética

Malla metálica cerrada o pantalla continua que rodea el objeto a proteger, o parte de él, con el fin de reducir las fallas de los sistemas eléctricos y electrónicos.

3.1.43 Cable de protección contra el rayo

Cable especial con alta rigidez dieléctrica, cuya envoltura metálica está continuamente en contacto con el suelo, ya sea directamente o por medio de una envolvente plástica conductora.

IEC 2010 - $\ensuremath{\mathbb O}$ INACAL 2015 - Todos los derechos son reservados

3.1.44 Conducto de protección contra el rayo

Conducto de baja resistividad en contacto con el suelo.

EJEMPLO: Hormigón o concreto con estructura de refuerzo de acero interconectada o ducto metálico.

3.1.45 Dispositivo de protección contra sobretensiones DPS

Dispositivo pensado para limitar las sobretensiones transitorias y evacuar las corrientes de choque. Contiene al menos un elemento no lineal.

3.1.46 Sistema de protección coordinada con dispositivos de protección contra sobretensiones

Conjunto de dispositivos de protección contra sobretensiones elegidos, seleccionados e instalados para formar un sistema destinado a reducir las fallas de los sistemas eléctricos y electrónicos.

3.1.47 Interfases de aislamiento

Dispositivos que son capaces de reducir las sobretensiones transitorias conducidas en las líneas que ingresan a la ZPR.

NOTA 1: Estas incluyen los transformadores de aislamiento con pantalla conectada a tierra entre los bobinados, los cables de fibra óptica sin pantalla metálica y los optoaisladores.

NOTA 2: Las características de la capacidad soportada del aislamiento de estos dispositivos son apropiadas para esta aplicación intrínsecamente o a través de un DPS.

3.1.48 Conexión equipotencial contra el rayo, EB

Conexión al SPCR de los componentes metálicos separados mediante conexiones conductoras directas o a través de dispositivos de protección contra las sobretensiones con el fin de reducir las diferencias de potencial causadas por la corriente del rayo.

3.1.49 Zona 0

Zona en la que una atmósfera explosiva consistente de una mezcla de aire y sustancias inflamables en forma de gas, vapor o niebla es probable que esté presente continuamente o durante largos periodos de tiempo o frecuentemente.

(IEC 60050-426:2008, 426-03-03, modificada) ^[5]

3.1.50 Zona 1

Zona en la que una atmósfera explosiva consistente de una mezcla de aire y sustancias inflamables en forma de gas, vapor o niebla es probable que ocurra en condiciones de funcionamiento normal ocasionalmente.

(IEC 60050-426:2008, 426-03-04, modificada) ^[5]

3.1.51 Zona 2

Zona en la que una atmósfera explosiva consistente de una mezcla de aire y sustancias inflamables en forma de gas, vapor o niebla no es probable que ocurra en condiciones de funcionamiento normal, pero si ello ocurriera, esta persistiría durante un corto periodo de tiempo solamente.

NOTA 1: En esta definición, la palabra "persistir" significa que el tiempo total para el cual la atmósfera inflamable existirá. Esto comprende normalmente el total de la duración de la descarga, más el tiempo tomado para que la atmósfera inflamable se disperse después que la descarga se ha detenido.

NOTA 2: Indicaciones de la frecuencia de la ocurrencia y duración pueden ser tomadas de los códigos relacionados con las aplicaciones y las industrias específicas.

(IEC 60050-426:2008, 426-03-05, modificada) ^[5]

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

3.1.52 Zona 20

Zona en la que una atmósfera explosiva, en forma de una nube de polvo combustible en el aire, está presente continuamente o durante periodos de tiempo largos o frecuentemente.

(IEC 60079-10.2:2009, 6.2, modificada) [3]

3.1.53 Zona 21

Zona en la que una atmosfera explosiva, en forma de una nube de polvo combustible en el aire, es probable que ocurra durante el funcionamiento normal ocasionalmente.

(IEC 60079-10.2:2009, 6.2, modificada) [3]

3.1.54 Zona 22

Zona en la que una atmósfera explosiva, en forma de una nube de polvo combustible en el aire, no es probable que ocurra durante el funcionamiento normal, pero si ocurriera, persistiría soló durante un corto periodo de tiempo.

(IEC 60079-10.2:2009, 6.2, modificada) [3]

Símbolos y abreviaturas

a	Tasa de amortización	Anexo D
A_D	Superficie de captación de descargas de una estructura aislada	A.2.1.1
A_{DJ}	Superficie de captación de descargas de una estructura adyacente	A.2.5
A_D '	Superficie de captación de descargas correspondiente a una saliente elevada del techo	A.2.1.2
A_l	Superficie de captación de descargas cerca de una línea	A.5
$A_{\rm L}$	Superficie de captación de descargas de una línea	A.4
A_{M}	Zona de influencia de las descargas cerca de una estructura	A.3
В	Edificio	A.2
C_D	Factor de localización	Tabla A.1
C_{DJ}	Factor de localización de una estructura adyacente	A.2.5
C_{E}	Factor del medio ambiente	Tabla A.4
\mathbf{C}_{l}	Factor de Instalación de la línea	Tabla A.2
C_L	Costo anual de las pérdidas totales en ausencia de las medidas de protección	5.5; Anexo D
C_{LD}	Factor dependiente de las condiciones de apantallamiento, puesta a tierra y aislamiento de la línea para las descargas en la línea	Anexo B
C_{Ll}	Factor dependiente de las condiciones de apantallamiento, puesta a tierra y aislamiento de la línea para las descargas cerca de la línea	Anexo B
C_{LZ}	Costo de pérdidas en una zona	Anexo D
C_P	Costo de las medidas de protección	Anexo D
C_{PM}	Costo anual de las medidas de protección seleccionadas	5.5.; Anexo D
C_{RL}	Costo anual de las pérdidas residuales	5.5; Anexo D
C_{RLZ}	Costo anual de las pérdidas residuales en una zona	Anexo D
C_{T}	Factor del tipo de línea para un transformador de AT/BT en una línea	Tabla A.3
c_a	Valor monetario de los animales en la zona	C.6
c_b	Valor monetario del edificio correspondiente a la zona	C.6
c_c	Valor monetario del contenido de la zona	C.6
Ce	Valor monetario total de los bienes en lugares peligrosos en el exterior de la estructura	C.6
c_{s}	Valor monetario de los sistemas internos (incluyendo sus actividades) en la zona	C.6
c_t	Valor monetario total de la estructura	C.6
c_z	Valor monetario del patrimonio cultural en la zona	C.6
D1	Heridas a los seres vivos por un choque eléctrico	4.1.2
D2	Daño físico	4.1.2
D3	Falla de los sistemas eléctricos y electrónicos	4.1.2

h_z	Factor de aumento de las pérdidas cuando un peligro especial está presente.	Tabla C.6
Н	Altura de la estructura	A.2.1.1
H_{J}	Altura de la estructura adyacente	A.2.5
i	Tasa de interés	Anexo D
K_{MS}	Factor correspondiente al desempeño de las medidas de protección contra IEMR	B.5
K_{S1}	Factor correspondiente a la efectividad del apantallamiento de la estructura	B.5
K_{S2}	Factor correspondiente a la efectividad del apantallamiento de las pantallas internas en la estructura	B.5
K_{S3}	Factor correspondiente a las características del alambrado interno	B.5
K_{S4}	Factor correspondiente a la tensión de impulso soportada de un sistema	B.5
L	Longitud de la estructura	A.2.1.1
$L_{\rm J}$	Longitud de la estructura adyacente	A.2.5
L_{A}	Pérdidas debido a heridas en los seres vivos por choque eléctrico	6.2
\mathcal{L}_{A}	(descargas en la estructura)	0.2
L_{B}	Pérdidas en la estructura relacionadas al daño físico (descargas	6.2
ЪВ	en la estructura)	0.2
L_{L}	Longitud de la sección de la línea	A.4
L _C	Pérdidas relacionadas a falla de los sistemas internos (descargas	6.2
LC	en la estructura)	0.2
$L_{\rm E}$	Pérdidas adicionales cuando el daño involucra estructuras en los	C.3; C.6
$\mathbf{\mathcal{L}}_{\mathrm{E}}$	alrededores	0.5, 0.0
L_{F}	Pérdidas en la estructura debido a daños físicos	Tablas C.2, C.8,
\mathbf{L}_{Γ}	1 stateds of the softward desides a duffer fishess	C.10, C.12
$L_{ ext{FE}}$	Pérdidas debido al daño físico en el exterior de la estructura	C.3; C.6
$\mathcal{L}_{ ext{FT}}$	Pérdidas totales debido al daño físico dentro y en el exterior de	C.3; C.6
L FI	la estructura	C.5, C.0
L_{M}	Pérdidas relacionadas a la falla de los sistemas internos	6.3
	(descargas cerca de la estructura)	0.5
L_{O}	Pérdidas en una estructura debida a la falla de los sistemas	Tablas C.2, C.8,
_0	internos	C.12
L_{T}	Pérdidas debido a heridas por choque eléctrico	Tabla C.2, C.12
L_{U}	Pérdidas debido a heridas en los seres vivos por choque eléctrico	6.4
-0	(descargas en la línea)	· · ·
L_{V}	Pérdidas en una estructura debido a daños físicos (descargas en	6.4
~ v	la línea)	0.1
L_{W}	Pérdidas relacionadas a las fallas en los sistemas eléctricos (descargas en la línea)	6.4

L_{X}	Pérdidas consecuentes a los danos correspondientes en la estructura	6.1
$L_{\rm Z}$	Pérdidas relacionadas a las fallas en los sistemas internos	6.5
T 1	(descargas cerca de la estructura)	4.1.2
L1	Pérdida de vidas humanas	4.1.3
L2	Pérdida del servicio al público	4.1.3
L3	Pérdida del patrimonio cultural	4.1.3
L4	Pérdidas de valor económico	4.1.3
m	Tasa de mantenimiento	Anexo D
N_X	Número de eventos peligrosos por año	6.1
N_D	Número de eventos peligrosos debido a descargas en la estructura	A.2.4
N_{DJ}	Número de eventos peligrosos debido a descargas en las estructuras adyacentes	A.2.5
N_{G}	Densidad de descargas a tierra de los rayos	A.1
N ₁	Número de eventos peligrosos debido a descargas cerca de la	A.5
11	línea	71.5
$N_{ m L}$	Número de eventos peligrosos debido a descargas en una línea	A.4
N_{M}	Número de eventos peligrosos debido a descargas cerca de una estructura	A.3
n_z	Número de personas potencialmente en peligro (víctimas o usuarios del servicio)	C.3; C.4
n_t	Número total de personas esperado (o de usuarios servidos)	C.3; C.4
P	Probabilidad de daños	Anexo B
P_A	Probabilidad de heridas en los seres vivientes por choque	6.2; B.2
P_{B}	eléctrico (descargas en una estructura) Probabilidad de daño físico en una estructura (descargas en una estructura)	Tabla B.2
P_{C}	Probabilidad de falla de los sistemas internos (descargas en una estructura)	6.2; B.4
P_{EB}	Probabilidad de reducir P _U y P _V dependiendo de las características de la línea y de la tensión soportada del equipo cuando la conexión equipotencial está instalada.	Tabla B.7
P_{LD}	Probabilidad de reducir P _U , P _V y P _W dependiendo de las características de la línea y de la tensión soportada del equipo (descargas en la línea conectada)	Tabla B.8
P_{Ll}	Probabilidad de reducir P _Z dependiendo de las características de la línea y de la tensión soportada de los equipos (descargas cerca de una línea conectada)	Tabla B.9
P_{M}	Probabilidad de falla de los sistemas internos (descargas cerca de una estructura)	6.3; B.5
P_{MS}	Probabilidad de reducir P_M dependiendo del apantallamiento, el alambrado y la tensión soportada del equipo	B.5
P_{DPS}	Probabilidad de reducir P _C , P _M , P _W y P _Z cuando un sistema	Tabla B.3
	coordinado de DPS está instalado. IEC 2010 - © INACAL 2015 - Todos los derecho	os son reservados

P_{TA}	Probabilidad de reducir P _A dependiendo de las medidas de	Tabla B.1
P_{U}	protección contra la tensión de toque y de paso Probabilidad de heridas a los seres vivos por choque eléctrico	6.4; B.6
P_{V}	(descargas a una línea conectada) Probabilidad de daño físico a una estructura (descargas a una	6.4; B.7
P_{W}	línea conectada) Probabilidad de falla de los sistemas internos (descargas en una	6.4; B.8
P_X	línea conectada) Probabilidad de daño correspondiente a una estructura	6.1
P _Z	Probabilidad de falla de los sistemas internos (descargas cerca de una línea conectada)	6.5; B.9
r_{t}	Factor de reducción asociado con un tipo de superficie	C.3
$r_{ m f}$	Factor de reducción de las pérdidas dependiendo del riesgo de incendio	C.3
r_p	Factor de reducción de las pérdidas debido a las provisiones contra el incendio	C.3
R	Riesgo	4.2
R_A	Componente del riesgo (heridas a los seres vivos – descargas en la estructura)	4.2.2
R_B	Componente del riesgo (daños físicos en una estructura – descargas en la estructura)	4.2.2
R_{C}	Componente del riesgo (Fallas de los sistemas internos – descargas en la estructura)	4.2.2
R_{M}	Componente del riesgo (Fallas de los sistemas internos – descargas cerca de la estructura)	4.2.3
R_S	Resistencia de la pantalla por unidad de longitud del cable	Tabla B.8
R_{T}	Riesgo tolerable	5.3; Tabla 4
R_{U}	Componente del riesgo (heridas a los seres vivos – descargas a la línea conectada)	4.2.4
R_{V}	Componente del riesgo (daños físicos a la estructura – descargas a la línea conectada)	4.2.4
Rw	Componente del riesgo (Falla de los sistemas internos – descargas a la línea conectada)	4.2.4
R_X	Componente del riesgo para una estructura	6.1
R_{Z}	Componente del riesgo (Falla de los sistemas internos – descargas cerca de una línea)	4.2.5
\mathbf{R}_1	Riesgo de pérdidas de vidas humanas en una estructura	4.2.1
R_2	Riesgo de pérdida del servicio al público en una estructura	4.2.1
R_3	Riesgo de pérdidas de patrimonio cultural en una estructura	4.2.1
R_4	Riesgo de pérdidas de valor económico en una estructura	4.2.1
R' ₄	Riesgo R ₄ cuando las medidas de protección son adoptadas	Anexo D
S	Estructura	A.2.2
S_{M}	Ahorro anual monetario	Anexo D
$S_{ m L}$	Sección de una línea	6.8
S1	Fuente del daño – descargas en la estructura	4.1.1

NORMA TÉCNICA	NTP-IEC 62305-2
PERUANA	17 de 12.

S2	Fuente del daño – descarga cerca de la estructura	4.1.1
S3	Fuente del daño – descarga en la línea	4.1.1
S4	Fuente del daño – descarga cerca de la línea	4.1.1
te	Duración en horas por año de la presencia de personas en un lugar peligroso en el exterior de la estructura	C.3
t_z	Duración en horas por año que las personas están presentes en un lugar peligroso	C.2
T_D	Días de tormenta por año	A.1
U_{W}	Tensión de impulso soportada nominal de un sistema	B.5
$\mathbf{W}_{\mathbf{m}}$	Ancho de la malla	B.5
W	Ancho de la estructura	A.2.1.1
W_{J}	Ancho de la estructura adyacente	A.2.5
X	Índice identificador de la componente del riesgo correspondiente	6.1
Z_{S}	Zonas de una estructura	6.7

4. EXPLICACIÓN DE LOS TÉRMINOS

4.1 Daños y pérdidas

4.1.1 Fuente de daños

La primera fuente de daños es la corriente del rayo. En función del punto de impacto se distinguen las siguientes fuentes de daños (véase la Tabla 1):

- S1: descargas en una estructura;
- S2: descargas cerca de una estructura;
- S3: descargas en una línea;
- S4: descargas cerca de una línea.

4.1.2 Tipo de daños

Una descarga puede producir daños en función de las características de la estructura a proteger. Algunas de las características más importantes son: tipo de construcción, contenido y sus aplicaciones, tipo de servicios y medidas de protección previstas.

Es útil distinguir, para aplicaciones prácticas de la evaluación del riesgo, entre tres tipos básicos de daños que pueden aparecer como consecuencia de las descargas atmosféricas. Son los siguientes (véase la Tabla 1):

D1: daños (heridas) a seres vivos por choque eléctrico;

D2: daños físicos;

D3: fallas de sistemas eléctricos y electrónicos.

El daño por rayo en una estructura puede limitarse a una parte de la estructura o extenderse a toda la estructura. También puede involucrar a sus alrededores y al ambiente (por ejemplo, emisiones químicas o radiactivas).

4.1.3 Tipo de pérdidas

Cada tipo de daño, solo o en combinación con otros, pueden producir pérdidas consecutivas diferentes en la estructura a proteger. El tipo de pérdidas que pueden aparecer dependen de las características de la estructura y de su contenido. Se deben tener en cuenta los siguientes tipos de pérdidas (véase la Tabla 1):

L1: pérdida de vida humana (incluyendo daños permanentes);

L2: pérdida de servicio público;

L3: pérdida de patrimonio cultural;

L4: pérdida de valor económico (estructura y su contenido, servicio y pérdida de actividad).

TABLA 1 - Fuentes de daños, tipo de daños y tipo de pérdidas en función del punto de impacto

Descarga del	rayo	Estructura			
Punto de impacto	Fuente de daño	Tipo de daño	Tipo de pérdida		
	S1	D1 D2 D3	L1, L4 ^a L1, L2, L3, L4 L1 ^b , L2, L4		
	S2	D3	L1 ^b , L2, L4		
	\$3	D1 D2 D3	L1, L4 ^a L1, L2, L3, L4 L1 ^b , L2, L4		
	S4	D3	L1 ^b , L2, L4		

^a Solamente en propiedades donde puede haber pérdida de animales.

4.2 Riesgo y componentes del riesgo

4.2.1 Riesgo

El riesgo R es el valor relativo de una pérdida anual promedio probable. Para cada tipo de pérdida que puede presentarse en una estructura, debe evaluarse el riesgo correspondiente.

Solamente para estructuras con riesgo de explosión y para hospitales o estructuras similares en las que la falla de los sistemas internos pone en peligro la vida humana inmediatamente.

Los riesgos a evaluar en una estructura pueden ser los siguientes:

R₁: riesgo de pérdida de vida humana (incluyendo las heridas permanentes);

R₂: riesgo de pérdida de servicio público;

R₃: riesgo de pérdida de patrimonio cultural;

R₄: riesgo de pérdida de valor económico.

Para evaluar los riesgos, R, deben definirse y calcularse las componentes del riesgo correspondientes (riesgos parciales en función de la fuente y del tipo de daño).

Cada riesgo, R, es la suma de sus componentes. Cuando se calcula un riesgo, las componentes del riesgo pueden agruparse de acuerdo con la fuente y el tipo de daño.

4.2.2 Componentes del riesgo para una estructura por descargas en la estructura

- R_A Componente relacionado con daños a los seres vivos producidos por choque eléctrico debido a las tensiones de toque y de paso dentro de la estructura y en el exterior en una zona de hasta 3 m alrededor de los conductores de bajada. Pueden aparecer pérdidas de tipo L1 y, en el caso de estructuras que almacenan ganado, también pueden aparecer pérdidas de animales de tipo L4.
 - NOTA: En estructuras especiales, las personas pueden estar sometidas a riesgos de impactos directos (por ejemplo, partes altas de un garaje de estacionamientos o de un estadio). Estos casos pueden considerarse también empleando los principios de esta parte de las normas IEC 62305.
- R_B Componente relacionado con los daños físicos producidos por chispas peligrosas en el interior de la estructura, causantes de fuego o de explosiones que también pueden afectar al medio ambiente. Pueden presentarse todos los tipos de pérdidas (L1, L2, L3 y L4).
- R_C Componente relacionado con las fallas de los sistemas internos debidos al IEMR. En todos los casos podrían producirse pérdidas del tipo L2 y L4 junto con pérdidas del tipo L1 en el caso de estructuras con riesgo de explosión, y hospitales u otras estructuras en las que la falla de los sistemas internos ponga en peligro inmediato a la vida humana.

4.2.3 Componentes del riesgo para una estructura por descargas cerca de la estructura

R_M Componente relacionado con las fallas de los sistemas internos debidos al IEMR. En todos los casos podrían producirse pérdidas del tipo L2 y L4, junto con pérdidas del tipo L1 en el caso de estructuras con riesgo de explosión, y hospitales u otras estructuras en las que la falla de los sistemas internos ponga en peligro inmediato la vida humana.

4.2.4 Componentes del riesgo para una estructura debido a descargas en una línea conectada a la estructura

- R_U Componente relacionado con los daños a los seres vivos producidos por choque eléctrico debido a las tensiones de contacto en el interior de la estructura. Pueden ocurrir pérdidas de tipo L1 y, en el caso de propiedades agrícolas, podrían ocurrir pérdidas de tipo L4 con posibles pérdidas de animales.
- R_V Componente relacionado con los daños físicos (fuego o explosión generados por chispas peligrosas producidas, generalmente en el punto de entrada de la línea en la estructura, entre la instalación externa y las partes metálicas) debido a la corriente del rayo transmitida a través y a lo largo de las líneas de entrada. Puede ocurrir cualquier tipo de pérdidas (L1, L2, L3 y L4).
- R_w Componente relacionado con las fallas de los sistemas internos causadas por sobretensiones inducidas en las líneas que entran en la estructura. En todos los casos podrían producirse pérdidas del tipo L2 y L4, junto con pérdidas del tipo L1 en aquellos casos de estructuras con riesgo de explosión y hospitales u otras estructuras en las que la falla de los sistemas internos ponga en peligro inmediato la vida humana.
 - NOTA 1: Las líneas que se toman en cuentan en esta evaluación son solamente las líneas que entran en la estructura.
 - NOTA 2: Las descargas en tuberías o próximas a las tuberías no se consideran como una fuente de daño, en base a la conexión de las tuberías a una barra de conexión equipotencial. Si no está prevista una barra de conexión equipotencial, también se debería considerar la amenaza del daño.

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

4.2.5 Componentes del riesgo para una estructura por descargas cerca de una línea conectada a la estructura

R_z Componente relacionado con las fallas de los sistemas internos causados por sobretensiones inducidas en las líneas que entran y se transmiten a la estructura. En todos los casos podrían producirse pérdidas del tipo L2 y L4, junto con pérdidas de tipo L1 en el caso de estructuras con riesgo de explosión, y hospitales u otras estructuras en las que la falla de los sistemas internos ponga en peligro inmediato la vida humana.

NOTA 1: Las líneas que se tienen en cuentan en esta evaluación son solamente las líneas que entran en la estructura.

NOTA 2: Las descargas en tuberías o próximas a las tuberías no se consideran como una fuente de daño, en base a la conexión de las tuberías a una barra de conexión equipotencial. Si no está prevista una barra de conexión equipotencial, debería considerarse tal amenaza.

4.3 Composición de los componentes del riesgo

Los componentes del riesgo a considerar para cada tipo de pérdidas en una estructura son los que se indican a continuación:

R₁: Riesgo de pérdida de vida humana:

$$R_{1} = R_{A1} + R_{B1} + R_{C1}^{(1)} + R_{M1}^{(1)} + R_{U1} + R_{V1} + R_{W1}^{(1)} + R_{Z1}^{(1)}$$
(1)

 Sólo para estructuras con riesgo de explosión y para hospitales con equipos eléctricos de reanimación u otras estructuras en las que la falla de los sistemas internos ponga en peligro inmediato la vida humana.

R₂: Riesgo de pérdida de servicio público:

$$R_2 = R_{R2} + R_{C2} + R_{M2} + R_{V2} + R_{W2} + R_{Z2}$$
 (2)

R₃: Riesgo de pérdida de patrimonio cultural:

$$R_3 = R_{R3} + R_{V3} \tag{3}$$

R₄: Riesgo de pérdida de valor económico:

$$R_4 = R_{A4}^{2} + R_{B4} + R_{C4} + R_{M4} + R_{U4}^{2} + R_{V4} + R_{W4} + R_{Z4}$$
 (4)

2) Sólo para propiedades donde puede producirse pérdida de animales.

Las combinaciones de las componentes del riesgo para cada tipo de pérdidas están, también, indicadas en la Tabla 2.

TABLA 2 - Componentes del riesgo a considerar en una estructura para cada tipo de pérdidas

Fuente de daño	S1		Descarga cerca de la estructura S2	Descarga en una línea conectada a la estructura S3			Descarga cerca de una línea conectada a la estructura S4	
Componente del riesgo	R_A	$R_{\rm B}$	$R_{\rm C}$	R_{M}	R_{U}	$R_{\rm V}$	R_{W}	R _Z
Riesgo para cada tipo de pérdidas								
R_1	*	*	* 1)	* 1)	*	*	* 1)	* 1)
R_2		*	*	*		*	*	*
R_3		*				*		
R_4	* 2)	*	*	*	* 2)	*	*	*

¹⁾ Sólo para estructuras con riesgo de explosión y hospitales u otras estructuras en las que la falla de los sistemas internos ponga en peligro inmediato la vida humana.

Las características de la estructura y las posibles medidas de protección que influyen en los componentes del riesgo en una estructura están indicadas en la Tabla 3.

Descargado por Temporales (todotemporales@gmail.com)

²⁾ Sólo para propiedades donde puede producirse pérdida de animales.

TABLA 3 - Factores que influyen en los componentes del riesgo en una estructura

Características de la estructura o de los sistemas internos Medidas de protección	RA	R _B	Rc	R _M	Ru	Rv	Rw	Rz
Superficie de captación	X	X	X	X	X	X	X	X
Resistividad del terreno	X							
Resistividad del suelo	X				X			
Restricciones físicas, aislamiento, avisos de advertencia, equipotencialización del terreno	X				X			
SPCR	X	X	X	$X^{1)}$	X ²⁾	X ²⁾		
DPS equipotencializados.	X	X			X	X		
Interfases de aislamiento			X ³⁾	X ³⁾	X	X	X	
Sistema de DPS coordinados			X	X			X	X
Pantalla espacial			X	X				
Apantallamiento de las líneas externas					X	X	X	X
Apantallamiento de las líneas internas			X	X				
Precauciones en el trazado			X	X				
Red equipotencial			X					
Precauciones contra incendio		X				X		
Sensibilidad al fuego		X				X		
Peligro especial		X				X		
Tensión de impulso soportada			X	X	X	X	X	X

Sólo para los SPCR externos en malla.
 Debido a la conexión equipotencial.
 Solamente si ellos pertenecen al equipo.

5. GESTION DE LOS RIESGOS

5.1 Procedimiento básico

Se debe aplicar el procedimiento siguiente:

- identificación de la estructura a proteger y sus características;
- identificación en la estructura de todos los tipos de pérdidas y del riesgo asociado R (R₁ a R₄);
- evaluación del riesgo R para cada tipo de pérdidas (R₁ a R₄);
- evaluación de la necesidad de protección mediante la comparación de los riesgos R₁, R₂ y R₃ para una estructura con el riesgo tolerable R_T;
- evaluación del rendimiento económico del costo de la protección en relación al costo total de las pérdidas con y sin medidas de protección. En este caso, la evaluación de las componentes del riesgo R4 para una estructura debe hacerse para evaluar tal costo (véase el Anexo D).

5.2 Estructura a considerar para la estimación del riesgo

La estructura que hay que considerar está formada por:

- la propia estructura;
- las instalaciones en la estructura;
- contenido de la estructura;
- personas en la estructura o de pie en una zona exterior a la estructura hasta una distancia de 3 m de la estructura;
- ambiente afectado por un daño a la estructura.

La protección no incluye las líneas conectadas en el exterior de la estructura.

NOTA: La estructura considerada puede subdividirse en varias zonas (véase el apartado 6.7).

5.3 Riesgo tolerable R_T

Es responsabilidad de la autoridad competente identificar el valor del riesgo tolerable.

Cuando las descargas atmosféricas implican la pérdida de vida humana o la pérdida de valor social o cultural, los valores representativos de riesgo tolerable R_T están indicados en la Tabla 4.

TABLA 4 - Valores típicos del riesgo tolerable R_T

Tipos de pérdidas	RT (y-1)
Pérdida de vida humana o daños permanentes	10 ⁻⁵
Pérdida de servicio público	10-3
Pérdida de patrimonio cultural	10 ⁻⁴

En principio, para el valor de la pérdida económica (L4), la ruta a ser seguida es la comparación de costo/beneficio dada en el Anexo D. Si los datos para este análisis no están disponibles, el valor representativo para el riego tolerable $R_T=10^{-3}$ puede ser utilizado.

5.4 Procedimiento específico para evaluar la necesidad de protección

De acuerdo con la Norma IEC 62305-1, deben considerarse los riesgos R₁, R₂ y R₃ para evaluar la necesidad de protección contra el rayo en una estructura:

Para cada riesgo deben darse los siguientes pasos:

- identificar las componentes R_x , que constituyen el riesgo;
- calcular las componentes identificadas del riesgo R_x;
- calcular el riesgo total R (véase el apartado 4.3);
- identificar el riesgo tolerable R_T;
- comparación del riesgo R con el valor del riesgo tolerable R_T.

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

Si $R \le R_T$. no es necesaria protección contra el rayo.

Si $R > R_T$, se deben tomar medidas de protección para reducir a $R \le R_T$ para todos los riesgos a los que está sometida la estructura.

El procedimiento para evaluar la necesidad de protección está indicado en la Figura 1.

NOTA 1: En los casos en los que el riesgo no pueda ser reducido a un nivel tolerable, el propietario debería ser informado y ser previsto el más alto nivel de protección para la instalación.

NOTA 2: Cuando la protección contra el rayo es requerida por la autoridad competente sobre las estructuras con un riesgo de explosión, al menos un SPCR de Clase II debería ser adoptado. Las excepciones para la utilización de un sistema de protección contra el rayo de nivel II pueden estar permitidas cuando son técnicamente justificadas y autorizadas por la autoridad competente. Por ejemplo, el uso de nivel de protección contra el rayo I está permitido en todos los casos, especialmente en aquellos donde el medio ambiente o los contenidos dentro de la estructura son excepcionalmente sensibles a los efectos de la descarga de un rayo. Además, las autoridades competentes pueden escoger permitir los sistemas de protección contra el rayo de nivel III donde la poca frecuencia de la actividad atmosférica y/o la insensibilidad de los contenidos de la estructura lo garantizan.

NOTA 3: Cuando el daño a la estructura debido al impacto de un rayo puede involucrar también a estructuras en los alrededores o el medio ambiente (por ejemplo emisiones de sustancias químicas o radiaciones), medidas de protección adicional para la estructura y medidas adecuadas para estas zonas pueden ser requeridas por las autoridades competentes.

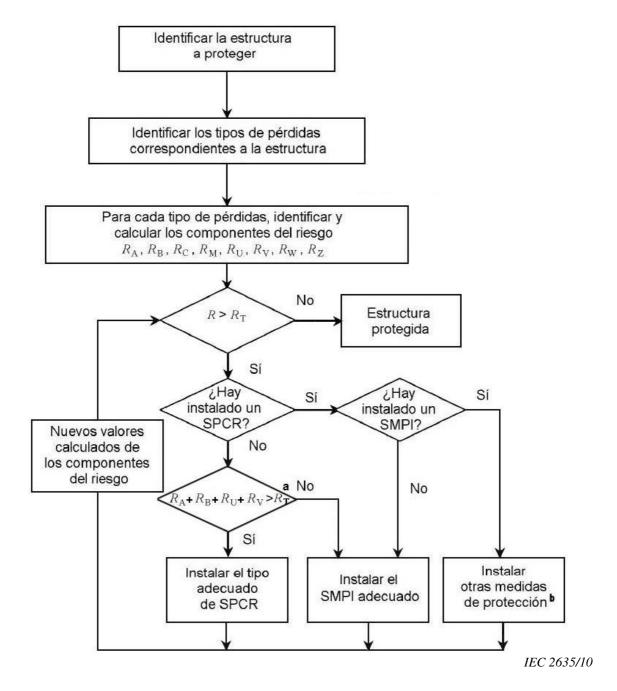
5.5 Procedimiento para evaluar la rentabilidad económica de la protección

Además de la necesidad de la protección contra el rayo de la estructura, puede ser útil estimar los beneficios económicos de la instalación de medidas de protección con la finalidad de reducir las pérdidas económicas L4.

La estimación de los componentes del riesgo R₄ permite al usuario evaluar el costo de las pérdidas económicas con y sin la adopción de las medidas de protección (véase el Anexo D).

El procedimiento para la estimación de la rentabilidad económica de la protección requiere de:

La identificación de los componentes R_X que constituyen el riesgo R₄;


- Cálculo de los componentes de riesgo identificados $R_{\rm X}$ en la ausencia de medidas de protección nuevas/adicionales.
- Cálculo del costo anual de las pérdidas debido a cada componente de riesgo $R_{\rm X}$;
- Cálculo del costo anual C_L de las pérdidas totales en ausencia de medidas de protección;
- Adopción de las medidas de protección seleccionadas;
- Cálculo de las componentes de riesgo R_X con las medidas de protección seleccionadas presentes;
- Cálculo del costo anual de las pérdidas residuales debidas a cada componente del riesgo $R_{\rm X}$ en la estructura protegida;
- Cálculo del costo anual total C_{RL} de las pérdidas residuales con las medidas de protección presentes;
- Cálculo del costo anual C_{PM} de las medidas de protección seleccionadas;
- Comparación de los costos.

Si $C_L < C_{RL} + C_{PM}$, la protección contra el rayo puede no ser considerada rentable.

Si $C_L \ge C_{RL} + C_{PM}$, las medidas de protección pueden probar que ahorran dinero a lo largo de la vida de la estructura.

El procedimiento para evaluar la rentabilidad de la protección es descrito en la Figura 2.

Puede ser útil evaluar algunas variantes de combinación de las medidas de protección para encontrar la solución óptima en relación a la rentabilidad.


Si Ra RB < RT, un SPCR completo no es necesario; en este caso DPSs de acuerdo con la norma IEC 62305-3 son suficientes.

FIGURA 1 - Procedimiento para decidir la necesidad de protección y para seleccionar las medidas de protección

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

b Véase la Tabla 3.

IEC 2636/10

FIGURA 2 - Procedimiento para evaluar la rentabilidad económica de las medidas de protección

5.6 Medidas de protección

Las medidas de protección tienen como objeto reducir el riesgo asociado a cada tipo de daño.

Las medidas de protección deben considerarse efectivas solamente si están de acuerdo con los requerimientos de las siguientes normas:

- IEC 62305-3 para la protección contra daños a los seres vivos y daños físicos en una estructura;
- IEC 62305-4 para la protección contra fallas de los sistemas internos.

5.7 Selección de las medidas de protección

La selección de las medidas de protección más adecuadas debe hacerla el diseñador distribuyendo cada componente del riesgo en el riesgo total *R* y teniendo en cuenta los aspectos técnicos y económicos de las diferentes medidas de protección.

Deben identificarse los parámetros críticos con el objeto de determinar las medidas más eficientes para reducir el riesgo R.

Para cada tipo de pérdidas hay un número de medidas de protección que, individualmente o combinadas, cumplen con la condición $R \leq R_T$. La solución que se adopte debe hacerse teniendo en cuenta los aspectos técnicos y económicos. Un procedimiento simplificado para la selección de las medidas de protección está indicado en el diagrama de flujo de la Figura 1 para estructuras. En cualquier caso, el instalador o el proyectista debería identificar los componentes del riesgo más críticos y reducirlos, teniendo en cuenta también los aspectos económicos

6. ESTIMACIÓN DE LAS COMPONENTES DEL RIESGO

6.1 Ecuación básica

Cada componente del riesgo, R_A, R_B, R_C, R_M, R_U, R_V, R_W y R_Z, tal como se describen en los apartados 4.2.2, 4.2.3, 4.2.4 y 4.2.5, puede ser expresado por medio de la ecuación general siguiente:

$$R_{X} = N_{X} \times P_{X} \times L_{X} \tag{5}$$

donde

N_x es el número de eventos peligrosos por año (véase también el Anexo A);

 P_x es la probabilidad de daños en una estructura (véase también el Anexo B);

 L_x es la pérdida consiguiente (véase también el Anexo C).

El número de eventos peligrosos, N_x , está afectado por la densidad de descargas a tierra (N_g) y por las características físicas de la estructura a proteger, las de sus alrededores y las del terreno.

La probabilidad de daño, P_x , está afectada por las características de la estructura a proteger y las medidas de protección adoptadas.

La pérdida consiguiente, Lx, está afectada por el uso asignado a la estructura, la presencia de personas, el tipo de servicio prestado al público, el valor de los bienes afectados por el daño y las medidas tomadas para limitar el monto de las pérdidas.

NOTA: Cuando el daño a la estructura debido al impacto de un rayo puede también involucrar las estructuras de los alrededores o el medio ambiente (por ejemplo emisiones de sustancias químicas o radiaciones), la perdida subsecuente debería ser añadida al valor de $L_{\rm X}$.

6.2 Estimación de las componentes del riesgo por descargas en una estructura (S1)

Para evaluar las componentes del riesgo por descargas atmosféricas en una estructura, se aplican las siguientes relaciones:

componente relacionada con los daños a los seres vivos (D1) por choque eléctrico

$$R_A = N_D x P_A x L_A \tag{6}$$

componente relacionada con los daños físicos (D2)

$$R_B = N_D x P_B x L_B \tag{7}$$

- componente relacionada con los fallos de los sistemas internos (D3)

$$R_C = N_D x P_C x L_C \tag{8}$$

Los parámetros para estimar los componentes del riesgo están indicados en la Tabla 5.

6.3 Evaluación de los componentes del riesgo por descargas cerca de una estructura (S2)

Para evaluar los componentes del riesgo por descargas atmosféricas cerca de una estructura, se aplican las siguientes relaciones:

componente relacionada con los fallos de los sistemas internos (D3)

$$R_M = N_M x P_M x L_M \tag{9}$$

Los parámetros para evaluar los componentes del riesgo están indicados en la Tabla 5.

Estimación de los componentes del riesgo por descargas en una línea conectada a la estructura (S3)

Para evaluar los componentes del riesgo por descargas atmosféricas en una línea entrante, se aplican las siguientes relaciones:

- componente relacionada con los daños a los seres vivos por choque eléctrico (D1)

$$R_{U} = (N_{L} + N_{DI})x P_{U} x L_{U}$$
(10)

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

- componente relacionada con los daños físicos (D2)

$$R_{V} = (N_{I} + N_{DI})x P_{V} x L_{V}$$
(11)

- componente relacionada con las fallas de los sistemas internos (D3)

$$R_{W} = \left(N_{L} + N_{DI}\right)x P_{W} x L_{W} \tag{12}$$

NOTA 1: En muchos casos N_{DJ} puede ser despreciada.

Los parámetros para evaluar los componentes del riesgo están indicados en la Tabla 5.

Si la línea tiene más de una sección (véase el apartado 6.8), los valores de R_U; R_V y R_w son la suma de los valores R_U; R_V y R_w correspondientes a cada sección de la línea. Las secciones a considerar son las que se encuentran entre la estructura y el primer nodo de distribución.

En el caso de una estructura con más de una línea conectada y con diferentes trazados, deben hacerse los cálculos para cada línea.

En el caso de una estructura con más de una línea conectada con el mismo trazado, los cálculos deben ser realizados solamente para la línea con las características más desfavorables, por ejemplo la línea con los valores mayores de N_L y N_I conectada al sistema interno con el valor más bajo de U_W (línea de telecomunicaciones versus línea de energía, línea sin apantallamiento versus línea apantallada, línea de energía de baja tensión versus línea de energía de alta tensión con transformador de AT/BT, etc.).

NOTA 2: En el caso de líneas para las cuales hay un traslape del área de equivalente de exposición, se recomienda considerar la zona de traslape sólo una vez.

6.5 Estimación de los componentes del riesgo por descargas cerca una línea conectada a la estructura (S4)

Para evaluar los componentes del riesgo por descargas atmosféricas cerca de una línea conectada a la estructura, se aplican las siguientes relaciones:

- componente relacionada con las fallas de los sistemas internos (D3)

$$R_Z = N_I x P_Z x L_Z \tag{13}$$

Los parámetros para evaluar los componentes del riesgo están indicados en la Tabla 5.

Si la línea tiene más de una sección (véase el apartado 6.8), el valor de R_z es la suma de los componentes R_z correspondientes a cada sección. Las secciones a considerar son las que se encuentran entre la estructura y el primer nodo de distribución.

TABLA 5 - Parámetros asociados a la evaluación de los componentes del riesgo para una estructura

Símbolo	Denominación	Valor según
Valor medio anual de eventos peligrosos debidos a las descargas		
N_D	- en la estructura	Capítulo A.2
N_{M}	- cerca de la estructura	Capítulo A.3
$N_{ m L}$	- en una línea que entra en la estructura	Capítulo A.4
$N_{\rm I}$	- cerca de una línea que entra en la estructura	Capítulo A.5
N_{DJ}	- en la estructura adyacente (véase la Figura A.5)	Capítulo A.2
Proba	bilidad de que una descarga en la estructura prod	ducirá
P_A	- daños a los seres vivos por choque eléctrico	Capítulo B.2
P_{B}	- daños físicos Capítulo B.3	
P_{C}	- fallas de sistemas internos	Capítulo B.4
Probabilidad de que una descarga cerca de la estructura producirá		
P_{M}	- fallas de sistemas internos	Capítulo B.5
Prob	pabilidad de que una descarga en una línea produ	cirá
P_{U}	- daños a los seres vivos por choque eléctrico	Capítulo B.6
P_{V}	- daños físicos	Capítulo B.7
P_{W}	- fallos de sistemas internos	Capítulo B.8
Probab	ilidad de que una descarga cerca de una línea pro	oducirá
$P_{\rm Z}$	- fallos de sistemas internos	Capítulo B.9
Pérdidas debidas a		
$L_A = L_U$	- daños a los seres vivos por choque eléctrico	Capítulo C.3
$L_B = L_V$	- daños físicos	Capítulos C.3, C.4, C.5, C.6
$L_C = L_M = L_W = L_Z$	- fallas de sistemas internos	Capítulos C.3, C.4, C.6

En el caso de una estructura con más de una línea conectada y con diferentes trazados deben hacerse los cálculos para cada línea.

En el caso de una estructura con más de una línea conectada y con el mismo trazado, los cálculos deben ser realizados solamente para la línea con las características más desfavorables, por ejemplo la línea con los valores mayores de N_L y N_I conectada al sistema interno con el valor más bajo de U_W (línea de telecomunicaciones versus línea de energía, línea sin apantallamiento versus línea apantallada, línea de energía de baja tensión versus línea de energía de alta tensión con transformador de AT/BT, etc.).

6.6 Resumen de los componentes del riesgo

Los componentes del riesgo para las estructuras son resumidos en la Tabla 6 de acuerdo a los diferentes tipos de daños y diferentes fuentes de daño.

TABLA 6 - Componentes del riesgo en una estructura en función de los diferentes tipos de daños y de las diferentes fuentes de daños

D ~	Fuente del daño			
Daño	S1 Descarga en la estructura	S2 Descarga cerca de la estructura	S3 Descarga en un servicio entrante	S4 Descarga cerca de un servicio
D1 Daños a seres vivos por choque eléctrico	$R_A = N_D x P_A x L_A$	-	$R_{U} = (N_{L} + N_{DJ}) \times P_{U}$ $\times L_{U}$	-
D2 Daños físicos	$R_B = N_D \times P_B \times L_B$	-	$R_V = (N_L + N_{DJ}) \times P_V$ $\times L_V$	-
D3 Fallas de sistemas eléctricos y electrónicos	$R_C = N_D x P_C x L_C$	$R_{M} = N_{M} \times P_{M} \times L_{M}$	$R_{W} = (N_{L} + N_{DJ}) \times P_{W}$ $\times L_{W}$	$R_Z = N_I \times P_Z \times L_Z$

Si la estructura está dividida en zonas Z_S (véase el apartado 6.7), debe valorarse cada componente del riesgo en cada zona Z_S .

El riesgo total R de la estructura es la suma de los componentes del riesgo asociados a las zonas Z_S que constituyen la estructura.

6.7 Partición de la estructura en zonas Zs

Para estimar cada componente del riesgo, una estructura puede dividirse en zonas Z_S de características homogéneas. Sin embargo, una estructura puede ser o puede considerarse como una sola zona.

Las zonas Z_S están definidas principalmente por:

- el tipo de terreno o suelo (componente del riesgo R_A y Ru);
- los compartimentos contra el fuego (componente del riesgo R_B y Rv);
- las pantallas espaciales (componente del riesgo R_C y R_M).

Pueden definirse otras zonas de acuerdo a:

- distribución de los sistemas internos (componente del riesgo R_C y R_M);
- medidas de protección existentes o a ser previstas (todos los componentes del riesgo);
- valor de las pérdidas Lx (todos los componentes del riesgo).

La partición de la estructura en zonas Z_S debería hacerse teniendo en cuenta la posibilidad de implementar las medidas de protección más convenientes.

NOTA: Las zonas Z_S de acuerdo a esta parte de la norma IEC 62305 pueden ser el SPCR en la línea conforme a la norma IEC 62305-4. Sin embargo ellas pueden ser diferentes de los SPCRs.

6.8 Partición de la línea en secciones S_L

Para evaluar las componentes del riesgo por la descargas de un rayo en o cerca de una línea, la línea podría ser dividida en secciones S_L. Sin embargo una línea puede ser, o puede ser considerada como, una sola sección.

Para todos los componentes del riesgo, las secciones S_L son definidas principalmente por:

- Tipo de línea (aérea o subterránea),
- Factores que afectan la superficie equivalente de exposición (C_D, C_E, C_T),
- Las características de la línea (apantallada o sin apantallamiento, resistencia de la pantalla).

Si existe más de un valor de un parámetro en una sección, el valor más desfavorable debe ser asumido.

6.9 Estimación de los componentes del riesgo en una estructura con zonas Zs

6.9.1 Criterios generales

Para la evaluación de los componentes del riesgo y la elección de los parámetros apropiados involucrados, se aplican las reglas siguientes:

- los parámetros relativos al número N de eventos peligrosos deben evaluarse de acuerdo con el Anexo A;
- los parámetros relativos a la probabilidad P de daños deben evaluarse de acuerdo con el Anexo B.

Además:

- Para los componentes R_A, R_B, R_U, R_V, R_W y R_Z se fija un solo valor en cada zona para cada parámetro involucrado. Cuando pueda aplicarse más de un valor, se debe elegir el de mayor valor.
- Para los componentes R_C y R_M , si en la zona hay más de un sistema interno involucrado, los valores de P_C y P_M vienen dados por:

$$P_{C} = 1 - (1 - P_{C1}) x (1 - P_{C2}) x (1 - P_{C3})$$
(14)

$$P_{M} = 1 - (1 - P_{M1}) x (1 - P_{M2}) x (1 - P_{M3})$$
(15)

donde P_{Ci} y P_{Mi} son los parámetros relativos al sistema interno i = 1, 2, 3, ...

- Los parámetros relativos a la cantidad de pérdidas L deben evaluarse de acuerdo con el Anexo C.

Si en una zona existe más de un valor para cualquier parámetro, con excepción de P_C y P_M, se tomará el valor del parámetro que dé lugar al mayor valor del riesgo.

6.9.2 Estructura de una sola zona

En este caso, solamente una zona Z_S coincidente con la estructura completa es definida. El riesgo R es la suma de los componentes de riesgo R_X de cada zona.

El hecho de suponer una sola zona para toda la estructura puede conducir a medidas de protección caras debido a que cada medida de protección deberá extenderse a toda la estructura.

6.9.3 Estructura con zonas múltiples

En este caso, la estructura se divide en diferentes zonas Z_S . El riesgo de la estructura es la suma de los riesgos relativos a cada una de las zonas; en cada zona el riesgo es la suma de todos los componentes del riesgo de la zona.

La división de la estructura en zonas permite al proyectista, la evaluación de los componentes del riesgo y la selección de las medidas de protección más apropiadas zona por zona, tener en cuenta las características de cada parte de la estructura reduciendo el costo total de la protección contra el rayo.

6.10 Análisis de costo-beneficio para las pérdidas económicas (L4)

Tanto si es necesaria una protección contra el rayo como si no lo es, con el objeto de reducir los riesgos R₁, R₂ y R₃, es útil evaluar la conveniencia económica de adoptar medidas de protección a fin de reducir el riesgo R₄ de pérdidas económicas.

Los puntos a considerar para la evaluación del riesgo R₄ deben definirse a partir de:

- la estructura completa;
- una parte de la estructura;
- una instalación interna;
- una parte de una instalación interna;
- una pieza del equipamiento;
- el contenido de la estructura.

El costo de las pérdidas, el costo de las medidas de protección y los posibles ahorros deberían ser evaluados de acuerdo con el Anexo D. Si los datos para este análisis no están disponibles, el valor representativo del riesgo tolerable $R_T = 10^{-3}$ puede ser utilizado.

ANEXO A (INFORMATIVO)

EVALUACIÓN DEL NÚMERO ANUAL N DE SUCESOS PELIGROSOS

A.1 Generalidades

El valor medio anual *N* de eventos peligrosos por descargas de rayos que afectan a una estructura a proteger depende de la actividad de las tormentas eléctricas de la región en la que se encuentra la estructura y de las características físicas de la estructura. Para calcular el número N, se debería multiplicar la densidad de descargas a tierra N_G, por la superficie de captación equivalente de la estructura, teniendo en cuenta los factores de corrección debidos a las características físicas del objeto.

La densidad de descargas a tierra N_G es el número de descargas por año y por km^2 . Este valor puede obtenerse, en muchas partes del mundo, a partir de las redes de localización de descargas.

NOTA: Si no se dispone de un mapa de N_G , se puede estimar en las regiones templadas mediante la expresión:

$$N_{G} \approx 0.1 T_{D} \tag{A.1}$$

Donde Td es el número de días de tormentas al año (puede obtenerse de los mapas isoceráunicos).

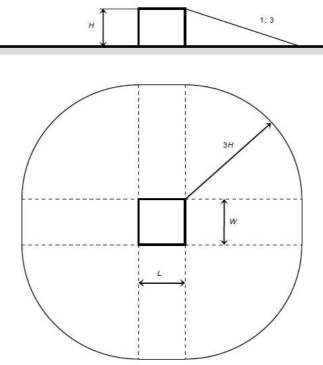
Los eventos que pueden considerarse peligrosos para una estructura a proteger son los siguientes:

- descargas en la estructura;
- descargas cerca de la estructura;
- descargas en una línea que entra en la estructura;
- descargas cerca de una línea que entra en la estructura;

descargas en otra estructura a la que está conectada la línea.

A.2 Evaluación del valor medio anual de eventos peligrosos por descargas en una estructura N_D y por descargas en una estructura adyacente N_{DJ}

A.2.1 Determinación de la superficie de captación A_D


La superficie de captación A_D se define, para estructuras aisladas en un terreno llano, por la intersección entre la superficie del terreno y una línea recta de pendiente 1/3 que pasa por la parte superior de la estructura (tocándola en ese punto) y girando alrededor de ella. El valor de A_D puede determinarse matemáticamente o gráficamente.

A.2.1.1 Estructura rectangular

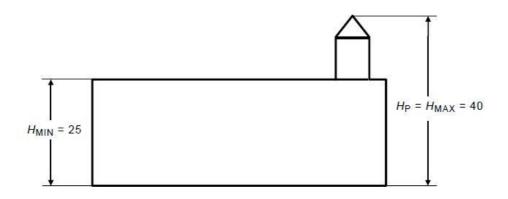
La superficie de captación de una estructura rectangular aislada de longitud L, anchura W y altura H, situada en un terreno llano, es igual a:

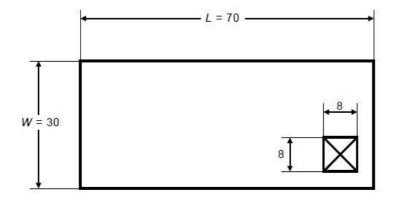
$$A_D = L x W + 2 x (3 x H) x (L+W) + \pi x (3 x H)^2$$
(A.2)

Donde L, W y H se expresan en metros (véase la Figura A.1).

IEC 2737/10

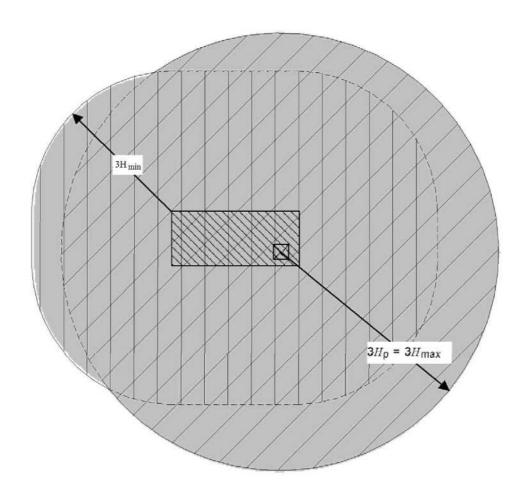
FIGURA A.1 - Superficie de captación AD de una estructura aislada

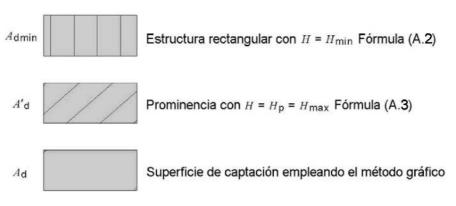

A.2.1.2 Estructura de forma compleja


Si la estructura tiene una forma compleja, tal como un techo en punta elevada (véase la Figura A.2), debería emplearse un método gráfico para evaluar A_D (véase la figura A.3).

Un valor aproximado aceptable para la superficie de captación es el valor máximo entre la superficie de captación A_{DMIN} evaluada con la ecuación (A.2) tomando la altura mínima de la estructura H_{MIN} y la superficie de captación que corresponde a la punta elevada del techo A_D . Donde A_D puede ser calculado mediante la expresión:

$$A_{D} = \pi x (3 x H_{p})^{2}$$
 (A.3)


Donde H_p es la altura de la punta elevada.

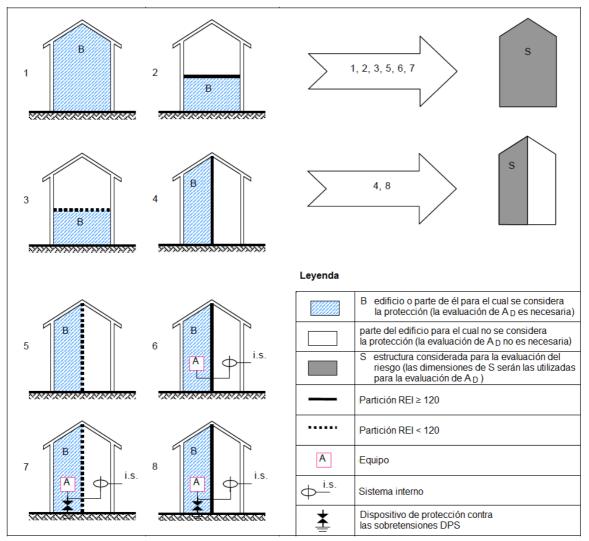


IEC 2638/10

FIGURA A.2 - Estructura de forma compleja

IEC 2639/10

FIGURA A.3 - Diferentes métodos para determinar la superficie de captación de la estructura dada


A.2.2 Estructura formando parte de un edificio

Cuando la estructura S considerada consiste de solamente una parte de un edificio B, las dimensiones de la estructura S pueden ser empleadas en la evaluación de A_D si se cumplen las condiciones siguientes (véase la Figura A.4):

- la estructura S es una parte vertical separada del edificio B;
- el edificio B no tiene riesgo de explosión;
- la propagación del fuego entre la estructura S y otras partes del edificio B es impedida durante 120 min (REI 120) mediante paredes resistentes al fuego o por medio de otras medidas de protección equivalentes;
- la propagación de sobretensiones a lo largo de las líneas comunes, si las hubiera, es impedida mediante dispositivos de protección contra sobretensiones DPSs en el punto de entrada de esas líneas en la estructura o mediante otra medida de protección equivalente.

NOTA: Para la definición e información del REI véase [6].

Cuando estas condiciones no se cumplen totalmente, se deberían emplear las dimensiones totales del edificio B.

IEC 2640/10

FIGURA A.4 - Estructura a considerar para la evaluación de la superficie de captación \mathbf{A}_D

A.2.3 Localización relativa de la estructura

La localización relativa de la estructura en relación con las estructuras que la rodean, o de lo expuesto del lugar en que se encuentre, se debe tener en cuenta mediante un factor de localización C_D (véase la Tabla A.1).

Una evaluación más precisa de la influencia de los objetos que la rodean puede ser obtenida considerando la altura relativa de la estructura con respecto a los objetos que la rodean o el suelo a una distancia de $3 \times H$ desde la estructura y suponiendo $C_D = 1$.

TABLA A.1 - Factor de localización de la estructura, CD

Situación relativa	Съ
Estructura rodeada por objetos más altos	0,25
Estructura rodeada por objetos de la misma altura o más pequeños	0,5
Estructura aislada: sin otros objetos en las proximidades	1
Estructura aislada en la parte superior de una colina o de un montículo	2

A.2.4 Número de eventos peligrosos N_D para la estructura

N_D puede evaluarse como el producto:

$$N_{D} = N_{G} \times A_{D} \times C_{D} \times 10^{-6}$$
(A.4)

donde:

 N_G es la densidad de descargas atmosféricas a tierra (1/km²/año);

A_D es la superficie de captación de la superficie aislada (m²), (véase la figura A.5);

C_D es el factor de localización de la estructura (véase la Tabla A.1).

A.2.5 Número de eventos peligrosos N_{DJ} para una estructura adyacente

El valor medio anual de eventos peligrosos por descargas en una estructura conectada en el extremo lejano de una línea N_{DJ} (véase el apartado 6.5 y la Figura A.5) puede evaluarse como el producto:

$$N_{DJ} = N_G \times A_{DJ} \times C_{DJ} \times C_T \times 10^{-6}$$
(A.5)

donde:

N_G es la densidad de descargas atmosféricas a tierra (1/km²/año);

A_{DJ} es la superficie de captación de la superficie adyacente aislada (m²), (Véase la Figura A.5);

C_{DJ} es el factor de localización de la estructura adyacente (Véase la Tabla A.1);

C_T es el factor del tipo de línea (véase la Tabla A.3).

A.3 Evaluación del valor medio anual del número de eventos peligrosos por descargas cerca de una estructura $N_{\rm M}$

N_M puede evaluarse como el producto:

$$N_{\rm M} = N_{\rm G} \times A_{\rm M} \times 10^{-6} \tag{A.6}$$

donde

N_G es la densidad de descargas atmosféricas a tierra (descargas/km² x año);

A_M es la superficie de captación de las descargas que impactan cerca de la estructura (m²).

La superficie de captación A_M se extiende hasta una línea situada a una distancia de 500 m desde el perímetro de la estructura (véase la Figura A.5).

$$A_{M} = 2 \times 500 \times (L+W) + \pi \times 500^{2}$$
(A.7)

A.4 Evaluación del valor medio anual del número de eventos peligrosos por descargas en una línea $N_{\rm L}$

Una línea puede consistir de varias secciones. Para cada sección de la línea, el valor de $N_{\rm L}$ puede ser evaluado mediante:

$$N_{L} = N_{G} \times A_{L} \times C_{I} \times C_{E} \times C_{T} \times 10^{-6}$$
(A.8)

donde

- N_L es el número de sobretensiones de amplitud no menor de 1 kV (sobretensiones/año) en la sección de la línea;
- N_G es la densidad de descargas atmosféricas a tierra (descargas/km² x año);
- A_L es la superficie de captación de las descargas que impactan en el servicio (m²), (véase la Figura A.5);
- C₁ es el factor de instalación de la línea (véase la Tabla A.2);
- C_T es el factor del tipo de línea (véase la Tabla A.3);
- C_E es el factor del medio ambiente (véase la Tabla A.4);

Con la superficie de captación de descargas de línea:

$$A_{L} = 40 \times L_{L} \tag{A.9}$$

L_L es la longitud de la sección de la línea (m).

Cuando la longitud de una línea es desconocida, se asume que L_L = 1 000 m .

NOTA 1: Los comités nacionales pueden disponer de mejor información al respecto, con la finalidad de cumplir las condiciones nacionales de las líneas de energía y líneas de telecomunicaciones.

TABLA A2 – Factor de instalación de la línea C1

Trazado	Cı
Aérea	1
Subterránea	0,5
Cables enterrados tendidos íntegramente dentro de una terminación de tierra enmallada (apartado 5.2 de la Norma IEC 62305-4:2010).	0,01

TABLA A3 - Factor del tipo de línea CT

Instalación	Ст
Línea de energía de BT, telecomunicaciones o de datos.	1
Línea de energía de AT (con transformador de AT/BT)	0,2

TABLA A4 – Factor del medio ambiente de la línea CE

Medio ambiente	CE
Rural	1
Suburbana	0,5
Urbana	0,1
Urbana con edificios altos ^a	0,01
a Edificios más altos de 20 m .	

NOTA 2: La resistividad del suelo afecta la superficie de captación A_L de las secciones enterradas. En general, la mayor resistividad del suelo corresponde a la mayor superficie de captación $(A_L$ proporcional a $\sqrt{\rho}$). El factor de instalación de la Tabla A.2 está basado en ρ = 400 Ω m .

NOTA 3: Mayor información sobre las superficies de captación A_1 para líneas de telecomunicación puede ser encontrada en el documento ITU-T Recomendación K.47 [7].

A.5 Evaluación del valor medio anual del número de eventos peligrosos por descargas cerca de una línea N_I

Una línea puede consistir de varias secciones. Para cada sección de la línea, el valor de $N_{\rm I}$ puede ser evaluado mediante:

$$N_1 = N_G \times A_1 \times C_1 \times C_E \times C_T \times 10^{-6}$$
(A.10)

donde:

 $N_{\rm I}$ es el número de sobretensiones de amplitud no menor de 1 kV (1/año) sobre la sección de la línea;

N_G es la densidad de descargas atmosféricas a tierra (descargas/km² x año);

- A_I es la superficie de captación de las descargas a tierra cerca de la línea (m²), (véase la Figura A.5);
- C_I es el factor de instalación (véase la Tabla A.2);
- C_T es el factor del tipo de línea (véase la Tabla A.3);
- C_E es el factor del medio ambiente de la línea (véase la Tabla A.4).

Con la superficie de captación de descargas cerca de una línea:

$$A_1 = 4000 \text{ x L}_L \tag{A.11}$$

Donde L_L es la longitud de la sección de la línea (m).

Cuando la longitud de una sección de la línea es desconocida, se asume que $L_L = 1\,000\,\mathrm{m}$.

NOTA 1: Los comités nacionales pueden mejorar esta información con la finalidad de cumplir mejor las condiciones nacionales de las líneas de energía y líneas de telecomunicaciones.

NOTA 2: Una evaluación más precisa de A_I puede ser encontrada en Electra No. 161 [8] y No, 162 [9] de 1955 para líneas de energía y en el documento ITU-T Recomendación K.46 [10] para líneas de telecomunicación.

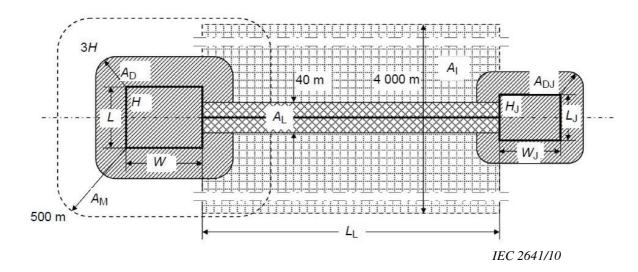


FIGURA A.5 - Superficies de captación (AD, AM, Al, AL)

ANEXO B (INFORMATIVO)

EVALUACIÓN DE LA PROBABILIDAD DE DAÑOS P_X EN UNA ESTRUCTURA

B.1 GENERALIDADES

Las probabilidades dadas en este anexo son válidas si las medidas de protección están conformes con las normas:

- IEC 62305-3 para las medidas de protección para reducir el daño a los seres vivos y el daño físico;
- IEC 62305-4 para las medidas de protección para reducir la falla de los sistemas internos.

Pueden emplearse otros valores si están justificados.

Solamente pueden elegirse probabilidades P_x menores a 1, si la medida o la característica es válida para toda la estructura o la zona (Z_s) a proteger y para todo el equipamiento.

B.2 PROBABILIDAD PA DE QUE UNA DESCARGA EN LA ESTRUCTURA PRODUZCA DAÑOS A LOS SERES VIVOS POR CHOQUE ELÉCTRICO

Los valores de la probabilidad P_A de producir un choque en los seres vivos por las tensiones de toque y de paso debido a una descarga en la estructura, dependen del SPCR adoptado y las medidas de protección adicionales previstas:

$$P_A = P_{TA} \times P_B \tag{B.1}$$

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

donde

P_{TA} depende de las medidas de protección adicionales contra las tensiones de toque y de paso, tales como aquellas indicadas en la Tabla B.1. Los valores de P_{TA} están dados en la Tabla B.1.

PB depende del nivel del sistema de protección contra el rayo para el cual el SPCR es diseñado conforme a la Norma IEC 62305-3. Los Valores de P_B están dados en la Tabla B.2.

TABLA B.l - Valores de la probabilidad PA de que una descarga en la estructura produzca impactos en los seres vivos por tensiones de toque y de paso

Medidas de protección	\mathbf{P}_{TA}
Sin medidas de protección	1
Avisos de advertencia	10-1
Aislamiento eléctrico (por ejemplo, al menos 3 mm de polietileno reticulado) de los partes expuestas (por ejemplo, conductores de bajada).	10-2
Equipotencialización efectiva del terreno	10-2
Restricciones físicas o estructura del edificio utilizada como sistema de conductores de bajada.	0

Si se ha tomado más de una previsión, el valor de P_{TA} es el producto de los valores correspondientes de PA.

NOTA 1: Las medidas de protección son eficaces en reducir la probabilidad PA solamente en estructuras protegidas o estructuras metálicas continuas o concreto con armadura de refuerzo como un SPCR natural, donde los requerimientos de conexión equipotencial y la puesta a tierra de la norma IEC 62305-3 son satisfechos.

NOTA 2: Para más información véanse los apartados 8.1 y 8.2 de la Norma IEC 62305-3:2010.

B.3 PROBABILIDAD P_B DE QUE UNA DESCARGA EN LA ESTRUCTURA PRODUZCA DAÑOS FÍSICOS

Un SPCR es adecuado como medida de protección para reducir la probabilidad P_B.

En la Tabla B.2 se indican, en función del nivel de protección contra rayos (NPR), los valores de la probabilidad P_B de que una descarga en la estructura produzca daños físicos.

TABLA B.2 - Valores de P_B en función de las medidas de protección para reducir los daños físicos

Características de la estructura	Niveles de protección	Рв
Estructura no protegida por un SPCR	-	1
Estructura protegida por un SPCR	IV	0,2
	III	0,1
	II	0,05
	I	0,02
Estructura con dispositivo captador de nivel I, con armaduras metálicas continuas o armaduras del hormigón actuando como conductores de bajada naturales.		0,01
Estructuras con techo metálico o con sistema de captación, incluyendo la posibilidad de los componentes naturales, con completa protección de las instalaciones situadas en el tejado contra descargas directas y con armaduras metálicas continuas o armaduras de hormigón armado actuando como conductores de bajada		0,001

NOTA 1: Son posibles otros valores de P_B diferentes a los de la Tabla B.2 si están basados en una investigación detallada que tenga en cuenta los requisitos de intercepción y de dimensionamiento definidos en la Norma IEC 62305-1.

NOTA 2: Las características de los SPCR, incluyendo aquellas para la conexión equipotencial del rayo, son reportadas en la norma IEC 62305-3.

B.4 PROBABILIDAD PC DE QUE UNA DESCARGA EN LA ESTRUCTURA PRODUZCA FALLAS DE LOS SISTEMAS INTERNOS

Un sistema coordinado de DPSs es adecuado como medida de protección para reducir la probabilidad P_C.

La probabilidad P_C de que una descarga en una estructura produzca un falla de los sistemas internos está dada por la fórmula:

$$P_{C} = P_{DPS} \times C_{LD}$$
 (B.2)

donde:

P_{DPS} depende del sistema coordinado de DPS conforme a la Norma IEC 62305-4 y al nivel de protección contra el rayo para el que los DSPs son diseñados. Los valores de la probabilidad P_{DPS} están dados en la Tabla B.3.

C_{LD} es un factor que depende del apantallamiento, la puesta a tierra y las condiciones del aislamiento de la línea a los que el sistema interno está conectado. Los valores del factor C_{LD} están dados en la Tabla B.4.

TABLA B.3 - Valores de la probabilidad P_{DPS} en función del nivel de protección para el que se han diseñado los dispositivos de protección contra sobretensiones

Nivel de protección	P _{SPD}
Sin protección coordinada de dispositivos de protección contra sobretensiones	1
III – IV	0,05
II	0,02
I	0,01
NOTA 2	0,005 - 0,001

NOTA 1: La protección coordinada mediante dispositivos de protección contra sobretensiones es efectiva para reducir P_C solamente en estructuras protegidas por un SPCR o en estructuras con armaduras metálicas continuas o con armaduras de hormigón armado actuando como un SPCR natural, siempre que se cumplan los requerimientos de equipotencialización y de puesta a tierra de la Norma IEC 62305-3.

NOTA 2: Los valores de P_{SPD} pueden ser reducidos mediante DPSs que tengan mejores características de protección (corriente nominal mayor I_N , nivel de protección menor Up, etc.) comparadas los requerimientos definidos para el nivel de protección I en los puntos de la instalación correspondientes (véase la Tabla A.3 de la Norma IEC 62305-1:2010 para información sobre las probabilidades de la corriente del rayo, y el Anexo E de la Norma IEC 62305-1:2010 y el Anexo D de la norma IEC 62305-4:2010 para la distribución de la corriente del rayo). Los mismos anexos pueden ser utilizados por los DPSs que tiene probabilidades P_{SPD} más altas.

TABLA B.4 - Valores de los factores C_{LD} y C_{Ll} dependiendo del apantallamiento, la puesta a tierra y las condiciones de aislamiento

Tipo de línea externa	Conexión a la entrada	Cld	CLl
Línea aérea sin pantalla	Sin definir	1	1
Línea subterránea sin pantalla	Sin definir	1	1
Línea de energía múltiple con neutro conectado a tierra	Ninguna	1	0,2
Línea subterránea con pantalla (energía o telecomunicaciones)	Pantalla no conectada a la misma barra equipotencial del equipo	1	0,3
Línea aérea con pantalla (energía o telecomunicaciones)	Pantalla no conectada a la misma barra equipotencial del equipo	1	0,1
Línea subterránea con pantalla (energía o telecomunicaciones)	Pantalla conectada a la misma barra equipotencial del equipo	1	0
Línea aérea con pantalla (energía o telecomunicaciones)	Pantalla conectada a la misma barra equipotencial del equipo	1	0
Cable de protección contra el rayo o cableado de protección contra el rayo en ductos (canalizaciones, tuberías metálicas o tuberías ligeras metálicas)	Pantalla conectada a la misma barra equipotencial del equipo	0	0
(Ninguna línea externa)	Ninguna conexión a las líneas externas (sistemas stand alone)	0	0
Cualquier tipo	Interface de aislamiento de acuerdo con la norma IEC 62305-4.	0	0

NOTA 3: En la evaluación de la probabilidad P_C , los valores de C_{LD} en la Tabla B.4 se refieren a los sistemas internos con pantalla; para los sistemas internos sin pantalla se debería asumir $C_{LD} = 1$.

NOTA 4: Para los sistemas internos sin pantalla.

- no conectados a líneas externas (sistemas stand alone), o
- conectados a líneas externas a través de interfases aislantes, o
- conectados a líneas externas, consistiendo de cable de protección contra el rayo o sistemas alambrados en canalizaciones para cables con protección contra el rayo, tuberías metálicas, o tuberías metálicas livianas, conectadas a la misma barra de equipotencialización que los equipos.

Un sistema coordinado de DSPs de acuerdo con la Norma IEC 62305-4 no es necesario para reducir P_C previendo que la tensión inducida U_I no es mayor que la tensión soportada U_W del sistema interno $(U_I \leq U_W)$. Para la evaluación de la tensión inducida U_I véase el Anexo A de la Norma IEC 62305-4:2010.

B.5 PROBABILIDAD P_M DE QUE UNA DESCARGA CERCA DE UNA ESTRUCTURA PRODUZCA FALLAS DE LOS SISTEMAS INTERNOS

Un SPCR enmallado, el apantallamiento, las precauciones en el trazado, la tensión soportada incrementada, las interfases aislantes y los sistemas coordinados de DPSs son adecuados como medidas de protección para reducir la probabilidad P_M.

La probabilidad P_M de que una descarga en una estructura produzca fallas de los sistemas internos depende de las medidas de protección contra el rayo adoptado.

Cuando no se ha llevado a cabo la coordinación de los dispositivos de protección contra sobretensiones de acuerdo con la Norma IEC 62305-4, el valor de P_M es igual al de P_{MS}.

Cuando se ha realizado la coordinación de los dispositivos de protección contra sobretensiones de acuerdo con la Norma IEC 62305-4, el valor de P_M esta dado por:

$$P_{M} = P_{DPS} \times P_{MS} \tag{B.3}$$

Para sistemas internos con equipos no conformes a la resistibilidad o nivel de tensión soportada dados las normas de producto correspondientes, se debe asumir $P_M=1$.

Los valores de P_{MS} son obtenidos del siguiente producto:

$$P_{MS} = (K_{S1} \times K_{S2} \times K_{S3} \times K_{S4})^{2}$$
(B.4)

donde

K_{S1} tiene en cuenta la eficacia del apantallamiento de la estructura, del SPCR o de otras pantallas en el límite de la zona ZPR 0/1;

 K_{S2} tiene en cuenta la eficacia del apantallamiento interno de la estructura en el límite de la zona ZPR X/Y (X > 0, Y > 1);

K_{S3} tiene en cuenta las características del cableado interno (véase la Tabla B.5);

K_{S4} tiene en cuenta la capacidad de soportar los impulsos de tensión del sistema a proteger.

NOTA 1: Cuando los equipos están provistos con interfaces aislantes consistentes de transformadores de aislamiento con pantalla conectada a tierra entre los bobinados, o cables de fibra óptica o de opto-acopladores son utilizados, se debería asumir que $P_{MS} = 0$.

En el interior de una zona de protección (ZPR), y a una distancia de seguridad desde el límite de la pantalla de al menos igual al ancho de la malla w_m , pueden evaluarse los factores K_{S1} y K_{S2} para el SPCR o para las pantallas espaciales enmalladas como sigue:

$$K_{S1} = 0.12 \text{ x w}_{m1}$$
 (B.5)

$$K_{S2} = 0.12 \text{ x w}_{m2}$$
 (B.6)

donde w_{m1} (m) y w_{m2} (m) son los anchos de la malla de las pantallas espaciales enmalladas, o de la malla de los conductores de bajada o también la distancia entre las columnas metálicas de la estructura, o la distancia entre una armadura de hormigón armado, cuando actúan como un SPCR natural.

Para pantallas metálicas continuas de espesores no menores que 0,1 mm, $K_{S1} = K_{S2} = 10^{-4}$.

NOTA 2: Cuando se provea una red equipotencial enmallada de acuerdo con la Norma IEC 62305-4, los valores de K_{S1} y de K_{S2} se pueden reducir a la mitad.

En los lugares en los que un lazo de inducción se encuentre cerca del límite de una ZPR, y si la distancia de los conductores a la pantalla es inferior que la distancia de seguridad, los valores de K_{S1} y de K_{S2} serán más altos. Por ejemplo, los valores de K_{S1} y de K_{S2} deberían valer el doble en los lugares en que la distancia a la pantalla va desde $0,1\ w_m$ a $0,2\ w_m$.

Para una cascada de ZPR, el valor de K_{S2} es el producto del K_{S2} correspondiente a cada zona.

NOTA 3: El valor máximo de K_{S1} y K_{S2} está limitado a 1.

TABLA B.5 - Valor del factor Ks3 en función del cableado interno

Tipo de cableado interno	
Cable sin pantalla - sin precauciones de trazado del cableado para evitar lazos 1)	
Cable sin pantalla – con precauciones de trazado del cableado para evitar grandes lazos ²⁾	
Cable sin pantalla – con precauciones de trazado del cableado para evitar lazos 3)	
Cable con pantalla y cables tendidos en tuberías metálicas 4)	0,001

- 1) Lazos de conductores con diferentes trazados en edificios grandes (área del lazo del orden de 50 m^2).
- 2) Lazos de conductores situados en el mismo conducto o lazos con diferentes trazados en edificios pequeños (área del lazo del orden de 10 m²).
- 3) Lazos de conductores en el mismo cable (área del lazo del orden de 0,5 m²).
- 4) Pantallas y tuberías metálicas conectadas en ambos extremos a la barra equipotencial y los equipos conectados a la misma barra equipotencial

El valor de K_{S4} se determina como:

$$K_{S4} = 1/U_{W}$$
 (B.7)

donde:

U_w es la tensión soportada de impulso nominal del sistema a proteger, en kV.

NOTA 4: El valor máximo de K_{S4} está limitado a 1.

Si en un sistema interno hay diferentes aparatos con diferentes niveles de impulso soportado, debe seleccionarse el factor K_{S4} correspondiente al menor nivel de impulso soportado.

B.6 PROBABILIDAD PU DE QUE UNA DESCARGA EN UNA LÍNEA PRODUZCA DAÑOS A LOS SERES VIVOS POR CHOQUE ELÉCTRICO

Los valores de la probabilidad P_U de daños a los seres vivos dentro de la estructura por tensiones de toque debido a la acción de una descarga en una línea que entra en una estructura, dependen de las características de la línea apantallada, de la tensión soportada al impulso de los sistemas internos conectados a la línea, de las medidas de protección adoptadas como restricciones físicas o avisos de advertencia y las interfaces aislantes o los dispositivos de protección contra sobretensiones DPS provistos para conexión equipotencial a la entrada de la línea de acuerdo con la norma IEC 62305-3.

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

NOTA 1: Cuando la coordinación mediante dispositivos de protección contra sobretensiones está de acuerdo con la Norma IEC 62305-4, no es necesario reducir P_u. En este caso son suficientes los dispositivos de protección contra sobretensiones de acuerdo con la Norma IEC 62305-3.

El valor de P_U está dado por:

$$P_{IJ} = P_{TIJ} \times P_{ER} \times P_{ID} \times C_{ID}$$
 (B.8)

donde:

P_{TU} depende de las medidas de protección contra las tensiones de toque, tales como restricciones físicas o avisos de advertencia. Valores de PTU están dados en la Tabla B.6;

P_{EB} depende de la conexión equipotencial contra el rayo (EB) de acuerdo a la norma IEC 62305-3 y del nivel de protección contra el rayo (NPCR) para él que los dispositivos de protección contra las sobretensiones están diseñados. Los valores de PEB están dados en la Tabla B.7;

P_{LD} es la probabilidad de falla de los sistemas internos debido a una descarga en la línea conectada dependiendo de las características de la línea. Los valores de PLD están dados en la Tabla B.8.

C_{LD} es un factor que depende del apantallamiento, la puesta a tierra y las condiciones de aislamiento de la línea. Los valores de C_{LD} están dados en la Tabla B.4.

NOTA 2: Cuando dispositivos de protección contra sobretensiones DPSs de acuerdo con la Norma IEC 62305-3 son provistos para la conexión equipotencial a la entrada de la línea, la puesta a tierra y la equipotencialidad realizadas de acuerdo con la Norma IEC 62305-4 puede mejorar la protección.

TABLA B.6 - Valores de la probabilidad P_{TU} que una descarga en una línea que ingresa causaran un choque eléctrico a los seres vivos debido a tensiones de toque peligrosas

Tipo de cableado interno	P _{TU}
Ninguna medida de protección	1
Avisos de advertencia	10-1
Aislamiento eléctrico	10-2
Restricciones físicas	0

NOTA 3: Si más de una provisión ha sido tomada, el valor de P_{TU} es el producto de los valores correspondientes.

TABLA B.7 - Valores de la probabilidad PEB como una función del nivel de protección para él que los dispositivos de protección contra las sobretensiones están diseñados

Nivel de protección contra el rayo	PEB
Ningún DPS	1
III – IV	0,05
II	0,02
I	0,01
Nota 3	0,005 - 0,001

NOTA 4: Los valores de PEB pueden ser reducidos por dispositivos de protección DPS que tienen mejores características de protección (corriente nominal mayor I_N , nivel de protección menor U_p , etc.) comparados con los requerimientos definidos para el NPCR I en las ubicaciones de instalación correspondientes (véase la Tabla A.3 de la Norma IEC 62305-1:2010 para información sobre las probabilidades de la corriente del rayo, y el Anexo E de la Norma IEC 62305-1:2010 y el Anexo D de la Norma IEC 62305-4:2010 para la distribución de la corriente del rayo). Los mismos anexos pueden ser utilizados para los dispositivos de protección contra las sobretensiones DPS que tienen probabilidades P_{EB} más altas.

TABLA B.8 - Valores de la probabilidad P_{LD} dependiendo de la resistencia R_S de la pantalla del cable y la tensión de impulso soportada Uw del equipo

Time de limes	Tipo de línea Condiciones de trazado, apantallamiento y conexión de puesta a tierra		Tensión soportada Uw en kV				
ripo de illica			1	1,5	2,5	4	6
Líneas de energía	pantalla cuya panta	rrada, sin pantalla o con alla no esta conectada a la nexión equipotencial que el	1	1	1	1	1
0	Aérea o enterrada con pantalla cuya pantalla está	$5\Omega/\text{km} < R_S \le 20 \Omega/\text{km}$	1	1	0,95	0,9	0,8
Líneas de telecomunica	conectada a la misma barra de	$1\Omega/km \le R_S \le 5~\Omega/km$	0,9	0,8	0,6	0,3	0,1
ción	conexión equipotencial que los equipos.	$R_S \leq 1~\Omega/km$	0,6	0,4	0,2	0,04	0,02

NOTA 5: En la zona suburbana/urbana, la línea de energía de BT utiliza generalmente un cable sin pantalla enterrado mientras que una línea de telecomunicaciones utiliza un cable con pantalla enterrado (con un mínimo de 20 conductores, una resistencia de pantalla de 5 Ω /km , un alambre de cobre con un diámetro de 0,6 mm). En las zonas rurales una línea de energía de BT utiliza un cable aéreo sin pantalla mientras que una línea de telecomunicaciones utiliza un cable sin apantallar aéreo (alambre de cobre con diámetro: 1 mm). Una línea de energía de AT enterrada utiliza generalmente un cable apantallado con una resistencia de la pantalla del orden de 1 Ω /km a 5 Ω /km . Los comités nacionales pueden mejorar esta información con la finalidad de cumplir mejor las condiciones de las líneas de energía y de las líneas de telecomunicaciones.

B.7 PROBABILIDAD PV DE QUE UNA DESCARGA EN UNA LÍNEA PRODUZCA DAÑOS FÍSICOS

Los valores de la probabilidad P_V de daños físicos por la acción de una descarga en una línea que entra en una estructura dependen de las características de la línea apantallada, de la tensión al impulso soportada de los sistemas internos conectados a la línea y de las interfaces aislantes o los dispositivos de protección contra sobretensiones previstos para la conexión equipotencial en la entrada de la línea de acuerdo a la Norma IEC 62305-3.

NOTA: Un sistema de dispositivos de protección contra sobretensiones coordinado de acuerdo con la norma IEC 62305-4 no es necesario para reducir la probabilidad Pv; en este caso, los dispositivos de protección contra sobretensiones de acuerdo a la Norma IEC 62305-3 son suficientes.

El valor de P_V está dado por:

$$P_{V} = P_{FB} \times P_{ID} \times C_{ID}$$
(B.9)

donde:

P_{EB} depende de la conexión equipotencial contra el rayo (EB) conforme a la norma IEC 62305-3 y del nivel de protección contra el rayo NPCR para el cual los dispositivos de protección contra las sobretensiones están diseñados. Los valores de P_{EB} están dados en la Tabla B.7;

P_{LD} es la probabilidad de falla de los sistemas internos debido a una descarga en la línea conectada, depende de las características de la línea. Los valores de P_{LD} están dados en la Tabla B.8;

C_{LD} es un factor que depende de las condiciones del apantallamiento, la puesta a tierra y del aislamiento de la línea. Los valores de C_{LD} están dados en la Tabla B.4.

B.8 PROBABILIDAD Pw DE QUE UNA DESCARGA EN UNA LÍNEA PRODUZCA FALLAS EN LOS SISTEMAS INTERNOS

Los valores de la probabilidad P_w de que una descarga en una línea que entra en una estructura cause una falla en los sistemas internos, dependen de las características de la línea apantallada, de la tensión de impulso soportada de los sistemas internos conectados a la línea y de las interfaces de aislamiento o de la coordinación del sistema de dispositivos de protección contra sobretensiones instalados.

$$P_{W} = P_{DPS} \times P_{ID} \times C_{ID}$$
 (B.10)

donde:

P_{DPS} depende del sistema de dispositivos de protección contra las sobretensiones coordinados conforme a la Norma IEC 62305-4 y del nivel de protección contra el rayo NPCR para el cual los dispositivos de protección contra las sobretensiones están diseñados. Los valores de P_{DPS} están dados en la Tabla B.3;

P_{LD} es la probabilidad de falla de los sistemas internos debido a una descarga en la línea conectada, depende de las características de la línea. Los valores de P_{LD} están dados en la Tabla B.8;

C_{LD} es un factor que depende de las condiciones del apantallamiento, la puesta a tierra y del aislamiento de la línea. Los valores de C_{LD} están dados en la Tabla B.4.

B.9 PROBABILIDAD PZ DE QUE UNA DESCARGA CERCA DE UNA LÍNEA PRODUZCA FALLAS EN LOS SISTEMAS INTERNOS

Los valores de la probabilidad P_z de que una descarga cerca de una línea que entra en una estructura cause una falla en los sistemas internos dependen de las características de la línea apantallada, de la tensión de impulso soportada del sistema conectado a la línea y las interfaces aisladas o de la coordinación del sistema de dispositivos de protección contra las sobretensiones instalados.

El valor de Pz está dado por:

$$P_{Z} = P_{DPS} \times P_{LI} \times C_{LI}$$
(B.11)

donde:

P_{DPS} depende del sistema de dispositivos de protección contra las sobretensiones coordinados conforme a la norma IEC 62305-4 y del nivel de protección contra el rayo NPCR para el cual los dispositivos de protección contra las sobretensiones están diseñados. Los valores de P_{DPS} están dados en la Tabla B.3;

P_{LI} es la probabilidad de falla de los sistemas internos debido a una descarga en la línea conectada, depende de las características de la línea y el equipo. Los valores de P_{LI} están dados en la Tabla B.9;

C_{LI} es un factor que depende de las condiciones del apantallamiento, la puesta a tierra y del aislamiento de la línea. Los valores de C_{LI} están dados en la Tabla B.4.

TABLA B.9 - Valores de la probabilidad P_{LI} dependiendo del tipo de línea y de la tensión de impulso soportada U_w del equipo

Tino do líneo	Tensión soportada Uw en kV					
Tipo de línea	1	1,5	2,5	4	6	
Líneas de energía	1	0,6	0,3	0,16	0,1	
Líneas de telecomunicaciones	1	0,5	0,2	0,08	0,04	

NOTA: Una evaluación más precisa de P_{LI} puede ser encontrada en el documento IEC/TR 62066:2002 para las líneas de energía $^{[10]}$ y el documento ITU-T Recomendación K.46 $^{[11]}$ para las líneas de telecomunicación.

ANEXO C (INFORMATIVO)

EVALUACIÓN DE LA MAGNITUD DE LAS PÉRDIDAS

C.1 GENERALIDADES

Los valores de la magnitud de las pérdidas L_x deberían ser evaluados y fijados por el diseñador del sistema de protección contra los rayos (o por el propietario de la estructura). Los valores medios típicos dados en este anexo son solamente valores propuestos por la IEC. Valores diferentes pueden ser asignados por cada comité nacional o después de una investigación detallada.

NOTA 1: Cuando el daño en una estructura debido a los rayos pueda involucrar también a estructuras en los alrededores o al medio ambiente (por ejemplo, emisiones de sustancias químicas o radiaciones), debe realizarse una evaluación más detallada de L_X que tome en cuenta esta pérdida adicional.

NOTA 2: Se recomienda aplicar las ecuaciones dadas en este Anexo como una fuente primaria de los valores de L_x .

C.2 VALOR MEDIO RELATIVO DE LA MAGNITUD DE LAS PÉRDIDAS POR EVENTO PELIGROSO

Las pérdidas L_X se refieren al valor medio relativo de un tipo de daño particular por un evento peligroso causado por una descarga de un rayo, considerando tanto su extensión como sus efectos.

El valor de las pérdidas L_X varía con el tipo de pérdida considerada:

- L1 (pérdida de vidas humanas, incluyendo heridas permanentes): el número de personas en peligro (victimas);
- L2 (pérdida del servicio público): el número de usuarios no atendidos;
- L3 (Pérdidas de bienes culturales): el valor económico en peligro de la estructura y su contenido;

- L4 (Pérdida de valores económicos): El valor económico en peligro de los animales, la estructura (incluyendo sus actividades), contenido y sistemas internos.

Y, para cada tipo de pérdidas, con el tipo de daño que producen las pérdidas (D1, D2 y D3).

La pérdida L_X debería ser determinada para cada zona de la estructura en la que está dividida.

C.3 PÉRDIDAS DE VIDAS HUMANAS (L1)

El valor de la pérdida L_X para cada zona puede ser determinado de acuerdo con la Tabla C.1, considerando que:

- La pérdida de vidas humanas es afectada por las características de la zona. Estas son tomadas en cuenta mediante factores de incremento (h_z) y de disminución (r_t, r_p, r_f) ;
- El máximo valor de pérdidas en la zona debe ser reducido mediante la relación del número de personas en la zona (n_z) y el número total de personas (n_t) en toda la estructura;
- El tiempo en horas por año en que las personas están presentes en la zona (t_z) , si este es menor que el total 8 760 h de un año, también será reducida la pérdida.

TABLA C.1 – Tipo de pérdida L1: Valores de pérdidas en cada zona

Tipo de daño	Pérdida típica	Ecuación
D1	$L_{A} = \frac{r_{t} \times L_{T} \times n_{Z}}{n_{t}} \times \frac{t_{Z}}{8760}$	(C.1)
D2	$L_{U} = \frac{r_{t} \times L_{T} \times n_{Z}}{n_{t}} \times \frac{t_{Z}}{8760}$	(C.2)
D3	$L_{\rm B} = L_{\rm V} = \frac{r_{\rm p} \ x \ r_{\rm f} \ x \ h_{\rm Z} \ x \ L_{\rm F} \ x \ n_{\rm Z}}{n_{\rm t}} \times \frac{t_{\rm Z}}{8760}$	(C.3)
D4	$L_{\rm C} = L_{\rm M} = L_{\rm W} = L_{\rm Z} = \frac{L_{\rm O} \times n_{\rm Z}}{n_{\rm t}} \times \frac{t_{\rm Z}}{8760}$	(C.4)

dónde:

- L_T es el número relativo promedio de victimas heridas por choque eléctrico (D1) debido a un evento peligroso (véase la Tabla C.2);
- L_F es el número relativo promedio de victimas por daño físico (D2) debido a un evento peligroso (véase la Tabla C.2);
- L_O es el número relativo promedio de victimas por falla de los sistemas internos (D3) debido a un evento peligroso (véase la Tabla C.2);
- r_t es un factor de reducción de las pérdidas en vidas humanas en función del tipo de suelo o piso (véase la Tabla C.3)
- r_p es un factor de reducción de las pérdidas debidas al daño físico en función de las disposiciones tomadas para reducir las consecuencias del fuego (véase la Tabla C.4);
- r_f es un factor de reducción de las pérdidas debidas a los daños físicos en función del riesgo de fuego o de explosión de la estructura (véase la Tabla C.5);
- hz es un factor de aumento de las pérdidas debidas a los daños físicos en presencia de un peligro específico (véase la Tabla C.6);
- nz es el número de personas en la zona;
- n_t es el número total de personas en la estructura;
- tz es la duración anual en horas de presencia de las personas en la zona.

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

TABLA C.2 – Tipo de pérdida L1: Valores medios de los tipos L_T, L_F y L_O

Tipo de daño		ípico de dida	Tipo de estructura	
D1 Heridas	L_{T}	10-2	Todos los tipos	
		10-1	Riesgo de explosión	
DO	${ m L_F}$	10-1	Hospital, hotel, escuela, edificio cívico	
D2 Daños físicos		L_{F}	5 x 10 ⁻²	Entretenimiento público, iglesia, museo
Danos físicos		10-2	Industrial, comercial	
		10-2	Otros	
D2		10-1	Riesgo de explosión	
D3 Fallas de sistemas internos	Lo		10-2	Unidad de cuidados intensivos y salas de
		10	operaciones de hospital	
memos		10-3	Otras partes del hospital	

NOTA 1: Valores de la Tabla C.2 se refieren a la presencia continua de personas en la estructura.

NOTA 2: En el caso de una estructura con riesgo de explosión, los valores de L_F y L_O pueden necesitar la realización de una evaluación más detallada, teniendo en cuenta el tipo de estructura, el riesgo de explosión, el concepto de zonas peligrosas y de las medidas tomadas para reducir el riesgo.

Cuando los daños sobre una estructura debidos a una descarga involucran a edificios en los alrededores o al medio ambiente (por ejemplo emisiones de sustancias químicas o radiaciones), se deberán tomar en cuenta las pérdidas adicionales (L_E) al evaluar las pérdidas totales (L_{FT}):

$$L_{\text{ET}} = L_{\text{EE}} + L_{\text{E}} \tag{C.5}$$

o

$$L_{E} = L_{FE} \times \frac{t_{E}}{8760} \tag{C.6}$$

donde

L_{FE} la pérdida debido a los daños físicos en el exterior de la estructura;

t_e la duración de la presencia de las personas en un lugar peligroso en el exterior de la estructura;

NOTA 3: Si los valores de LFE y te son desconocidos, debería asumirse que L_{FE} x t_e / 8 760 = 1.

TABLA C.3 – Factor de reducción r_t como una función del tipo de superficie del suelo o piso

Tipo de superficie ^b	Resistencia de contacto kΩ ^a	\mathbf{r}_{t}
Agrícola, concreto	≤ 1	10-2
Mármol, cerámica	1 – 10	10-3
Grava, moqueta, alfombras	10 - 100	10-4
Asfalto, linóleo, madera	≥100	10 ⁻⁵

a Valores medidos entre un electrodo de área de compresión de 400 cm² con una fuerza uniforme de 500 N y un punto del infinito.

TABLA C.4 – Factor de reducción r_p como una función de las provisiones tomadas para reducir las consecuencias del fuego

Provisiones	$\mathbf{r}_{\mathbf{p}}$
Ninguna provisión	1
Una de las siguientes provisiones: extinguidores; instalaciones de	
extinguidores operados manualmente fijos; instalaciones de alarma	0,5
manuales; hidrantes; compartimientos contra el fuego; rutas de escape.	
Una de las siguientes provisiones: instalaciones de extinguidores operados	0,2
automáticamente fijos; instalaciones de alarma automáticos. ^a	0,2
a Solamente si está protegido contra sobretensiones y otros daños y si los bomberos pued	len llegar en menos de 10
min.	

Si se ha tomado más de una previsión, el valor de r_p debería ser tomado como el menor valor de los valores relevantes.

En las estructuras con riesgo de explosión, $r_p = 1$ para todos los casos.

TABLA C.5 – Factor de reducción rf como una función del riesgo de fuego o explosión en la estructura

Riesgo	Magnitud del riesgo	$\mathbf{r_f}$
Explosión	Zonas 0, 20 y explosivo sólido	1
	Zonas 1, 21	10-1
	Zonas 2, 22	10 ⁻³
Fuego	Alto	10 ⁻¹
	Normal	10-2
	Bajo	10 ⁻³
Explosión o fuego	Ninguna	0

b Una capa de material aislante, por ejemplo asfalto de 5 cm de espesor (o una capa de grava de 15 cm de espesor) generalmente reducen el riesgo a un nivel tolerable.

- NOTA 4: En el caso de una estructura con riesgo de explosión, el valor para $r_{\rm f}$ puede necesitar una evaluación más detallada.
- NOTA 5: Estructuras con un alto riesgo de incendio se puede asumir que son las estructuras están hechas de materiales combustibles o estructuras con techos de materiales combustibles o estructuras con una energía calorífica especifica mayor de 800 MJ/m².
- NOTA 6: Las estructuras con un riesgo normal de incendio pueden considerarse que son las estructuras con una energía calorífica específica entre 800 MJ/m² y 400 MJ/m².
- NOTA 7: Las estructuras con un riesgo bajo de incendio puede considerarse que son las estructuras con una energía calorífica específica inferior a 400 MJ/m², o estructuras que contienen solamente una pequeña cantidad de materiales combustibles.
- NOTA 8: La energía calorífica específica es el cociente entre la energía total del material combustible en la estructura y la superficie total de la estructura.
- NOTA 9: Para los propósitos de esta parte de la Norma IEC 62305, las estructuras que contienen zonas peligrosas o materiales explosivos sólidos no deberían ser asumidas como estructuras con un riesgo de explosión, si una de las siguientes condiciones se cumple totalmente:
- a) La duración de la presencia de sustancias explosivas es menor que 0,1 h/año .
- b) El volumen de la atmosfera explosiva es despreciable de acuerdo con la Norma IEC 60079-10-1 $^{[2]}$ y la Norma IEC 60079-10-2 $^{[3]}$;
- c) La zona no puede ser impactada directamente por una descarga y las chispas peligrosas en la zona son evitadas.
- NOTA 10: Para zonas peligrosas encerradas dentro de cobertizos metálicos, la condición c) es completamente cumplida cuando el cobertizo, como un sistema de captación natural, actúa de forma segura sin perforaciones o problemas de puntos calientes, y los sistemas internos dentro del cobertizo, si los hubiera, son protegidos contra sobretensiones para evitar las chispas peligrosas.

TABLA C.6 - Factor de aumento h_z de la cantidad relativa de pérdidas por la presencia de un riesgo especial

Tipos de daños especiales	h _z
Sin daño especial	1
Nivel bajo de pánico (por ejemplo, estructuras limitadas a dos pisos y número de personas inferior a 100)	2
Nivel medio de pánico (por ejemplo, estructuras destinadas a eventos culturales o deportivos con un número de personas entre 100 y 1 000)	5
Dificultad de evacuación (por ejemplo, estructuras con personas inválidas, hospitales)	5
Nivel alto de pánico (por ejemplo, estructuras destinadas a eventos culturales o deportivos con un número de personas superior a 1 000)	10

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

C.4 PÉRDIDAS INACEPTABLES DE SERVICIO PÚBLICO (L2)

El valor de la pérdida L_X para cada zona puede ser determinado de acuerdo con la Tabla C.7 considerando que:

- La pérdida del servicio al público es afectada por las características de la zona de la estructura. Estas son tomadas en cuenta mediante factores de disminución (r_f, r_p) ;
- El máximo valor de pérdidas debido a los daños en la zona debe ser reducido mediante la relación del número de usuarios del servicio en la zona (n_z) entre el número total de usuarios del servicio (n_t) en toda la estructura;

TABLA C.7 – Tipo de pérdida L2: Valores de pérdidas para cada zona

Tipo de daño	Pérdida típica	Ecuación
D2	$L_B = L_V = r_P \ x \ r_f \ x \ L_F \ x \frac{n_Z}{n_t}$	(C.7)
D3	$L_C = L_M = L_W = L_Z = L_O x \frac{n_Z}{n_t}$	(C.8)

dónde:

- L_F es el número relativo promedio de usuarios sin servicio por daño físico (D2) debido a un evento peligroso (véase la Tabla C.8);
- L_O es el número relativo promedio de usuarios sin servicio por falla de los sistemas internos (D3) debido a un evento peligroso (véase la Tabla C.8);
- r_p es un factor de reducción de las pérdidas debidas al daño físico en función de las disposiciones tomadas para reducir las consecuencias del fuego (véase la Tabla C.4);
- r_f es un factor de reducción de las pérdidas debidas a los daños físicos en función del riesgo del fuego (véase la Tabla C.5);
- nz es el número de usuarios del servicio en la zona;
- n_t es el número total de usuarios del servicio en la estructura;

t_Z es la duración anual en horas de presencia de las personas en la zona.

TABLA C.8 – Tipo de pérdida L2: Valores medios típicos de L_F y L_O

Tipo de daño	Valor típico de pérdida		Tipo de servicio
D2	10-1		Gas, agua, suministro de energía
Daños físicos	los físicos L _F	10-2	TV, Líneas de telecomunicaciones
D3 Fallas de sistemas Lo internos	Ţ	10-2	Gas, agua, suministro de energía
	10-3	TV, Líneas de telecomunicaciones	

C.5 PÉRDIDAS DE PATRIMONIO CULTURAL IRREEMPLAZABLE (L₃)

El valor de la pérdida L_X para cada zona puede ser determinado de acuerdo con la Tabla C.9 considerando que:

- La pérdida del patrimonio cultural es afectada por las características de la zona. Estas son tomadas en cuenta mediante factores de disminución (r_f, r_p) ;
- El máximo valor de pérdidas debido a los daños en la zona debe ser reducido mediante la relación del valor de la zona (c_z) entre el valor total (c_t) de toda la estructura (edificio y contenido).

TABLA C.9 – Tipo de pérdida L3: Valores de pérdidas para cada zona

Tipo de daño	Pérdida típica	Ecuación
D2 Daño físico	$L_B = L_V = r_P \ x \ r_f \ x \ L_F \ x \frac{c_Z}{c_t}$	(C.9)

dónde:

L_F es el número relativo promedio de todos los bienes afectados por daño físico (D2) debido a un evento peligroso (véase la Tabla C.10);

- r_p es un factor de reducción de las pérdidas debidas al daño físico en función de las disposiciones tomadas para reducir las consecuencias del fuego (véase la Tabla C.4);
- r_f es un factor de reducción de las pérdidas debidas a los daños físicos en función del riesgo de fuego (véase la Tabla C.5);
- cz es el valor del patrimonio cultural en la zona;
- ct es el valor del total del edificio y el contenido de la estructura (suma de todas las zonas);

TABLA C.10 – Tipo de pérdida L3: Valores medios típicos de LF

Tipo de daño	Valor de pérdida típica		Tipo de estructura
D2 Daños físicos	L_{F}	10-1	Museos, galerías

C.6 PÉRDIDAS ECONÓMICAS (L4)

El valor de la pérdida L_X para cada zona puede ser determinado de acuerdo con la Tabla C.11 considerando que:

- La pérdida de valores económicos es afectada por las características de la zona. Estas son tomadas en cuenta mediante factores de disminución (r_t, r_p, r_f);
- El máximo valor de pérdidas debido a los daños en la zona debe ser reducido mediante la relación del valor correspondiente en la zona (c_z) entre el valor total (c_t) de toda la estructura (animales, edificio, contenido y sistemas internos incluyendo sus actividades). El valor relevante de la zona es función del tipo de daño:

D1 (heridas de animales debido al c_a (solo el valor de los animales) choque eléctrico)

D2 (daño físico) $c_a + c_b + c_c + c_s$ (Valor de todos los bienes)

D3 (fallas de los sistemas c_s (solo el valor de los sistemas internos y sus internos) actividades)

TABLA C.11 – Tipo de pérdida L4: Valores de pérdidas para cada zona

Tipo de daño	Pérdida típica	Ecuación
D1	$L_A = r_t \times L_T \times \frac{c_a}{c_t}^a$	(C.10)
D1	$L_U = r_t \times L_T \times \frac{c_a}{c_t}^a$	(C.11)
D2	$L_B = L_V = r_P \times r_f \times L_F \times \frac{\left(c_a + c_b + c_c + c_s\right)^a}{c_t}$	(C.12)
D3	$L_C = L_M = L_W = L_Z = L_O x \frac{c_s}{c_t}^a$	(C.13)

a Las relaciones c_a/c_t y $(c_a + c_b + c_c + c_s)/c_t$ y c_s/c_t tienen que ser consideradas solamente en la ecuación (C.10) – (C.13), si la estimación es conducida de acuerdo con el apartado 6.10, utilizando el Anexo D. En caso de utilizar un valor representativo para el riesgo tolerable R4 de acuerdo con la Tabla 4, las relaciones no tienen que ser tomadas en cuenta. En estos casos, las relaciones tienen que ser reemplazadas por el valor 1.

dónde:

- L_T es el valor relativo medio típico de todos los bienes dañados por choque eléctrico (D1) debido a un evento peligroso (véase la Tabla C.12);
- L_F es el valor relativo medio típico de todos los bienes dañados por daño físico (D2) debido a un evento peligroso (véase la Tabla C.12);
- L_O es el valor relativo medio típico de todos los bienes dañados por falla de los sistemas internos (D3) debido a un evento peligrosos (véase la Tabla C.12);
- es un factor de reducción de las pérdidas de animales en función del tipo de suelo o piso (véase la Tabla C.3)
- r_p es un factor de reducción de las pérdidas debidas al daño físico en función de las disposiciones tomadas para reducir las consecuencias del fuego (véase la Tabla C.4);
- rf es un factor de reducción de las pérdidas debidas a los daños físicos en función del riesgo de fuego o de explosión de la estructura (véase la Tabla C.5);
- ca es el valor de los animales en la zona;
- c_b es el valor del total del edificio correspondiente a la zona;

- es el valor del contenido en la zona; c_{c}
- es el valor de los sistemas internos incluyendo sus actividades en la zona; c_s
- es el valor total de la estructura (suma de todas las zonas para animales, edificio, c_{t} contenido y sistemas internos incluyendo sus actividades).

TABLA C.12 – Tipo de pérdida L4: Valores medios de los tipos L_T, L_F y L_O

Tipo de daño		or de a típica	Tipo de estructura
D1 Heridas debido al choque	L_{T}	10-2	Todos los tipos donde solamente hay animales
		1	Riesgo de explosión
D2	L_{F}	0,5	Hospital, industrial, museo, agrícola
Daños físicos		0,2	Hotel, escuela, oficina, iglesia, entretenimiento público, comercial
		10-1	Otros
		10-1	Riesgo de explosión
D3	L_0	10-2	Hospital, industrial, oficinas, hotel, comercial
Fallas de los sistemas internos		10-3	Museo, agrícola, escuela, iglesia, entretenimiento público
		10-4	Otros

NOTA 1: En el caso de estructuras con riesgo de explosión, los valores de L_F y L_O pueden necesitar una evaluación más detallada, tomando en cuenta el tipo de estructura, el riesgo de explosión, el concepto de zonas peligrosas y de las medidas tomadas para reducir el riesgo, etc.

Cuando los daños sobre una estructura debidos a una descarga involucran a estructuras en los alrededores o al medio ambiente (por ejemplo emisiones de sustancias químicas o radiaciones), se deberán tomar en cuenta las pérdidas adicionales (LE) al evaluar las pérdidas totales (L_{FT}):

$$L_{FT} = L_{FE} + L_E \tag{C.14}$$

o

$$L_E = L_{FE} x \frac{c_e}{c_t} \tag{C.15}$$

donde

L_{FE} la pérdida debido a los daños físicos en el exterior de la estructura;

c_e es el valor total de los bienes en un lugar peligroso en el exterior de la estructura;

NOTA 2: Si el valor de L_{FE} es desconocido, debería asumirse que L_{FE} = 1 .

ANEXO D (INFORMATIVO)

EVALUACIÓN DEL COSTO DE LAS PÉRDIDAS

El costo de las pérdidas C_{LZ} en una zona puede calcularse mediante la siguiente ecuación:

$$C_{LZ} = R_{4Z} \times c_{t} \tag{D.1}$$

donde:

R_{4Z} es el riesgo relacionado con la pérdida del valor en la zona, sin medidas de protección;

ct es el valor total de la estructura (animales, edificio, contenido y sistemas internos incluyendo sus actividades como dinero).

El costo total de las pérdidas CL en la estructura puede ser calculado mediante la siguiente ecuación.

$$C_{L} = \sum C_{LZ} = R_4 \times C_t \tag{D.2}$$

donde:

 $R_4 = \sum R_{4Z}$ es el riesgo relacionado a la pérdida del valor, sin medidas de protección.

El costo C_{RLZ} de la pérdida residual en una zona a pesar de las medidas de protección puede ser calculado por medio de la ecuación:

$$C_{RIZ} = R'_4 \times c_t \tag{D.3}$$

donde:

 R'_{4Z} es el riesgo relacionado con la pérdida del valor en la zona, con medidas de protección.

El costo total C_{RL} de la pérdida residual en la estructura a pesar de las medidas de protección puede ser calculado por medio de la ecuación.

$$C_{RL} = \sum C_{RLZ} = R'_4 \times C_t \tag{D.4}$$

donde:

 $R_4 = \sum R_{4Z}$ es el riesgo relacionado a la pérdida del valor en la estructura, con medidas de protección.

El costo anual C_{PM} de las medidas de protección puede ser calculado por medio de la ecuación:

$$C_{PM} = C_P x (i + a + m) \tag{D.5}$$

donde:

C_P es el costo de las medidas de protección;

- *i* es la tasa de interés;
- a es la tasa de amortización;
- m es la tasa de mantenimiento.

El ahorro anual S_M en dinero es:

$$S_M = C_L - \left(C_{PM} + Z_{RL}\right) \tag{D.6}$$

La protección es justificada, si el ahorro anual es $S_M > 0$.

ANEXO E (INFORMATIVO)

ESTUDIOS DE CASO

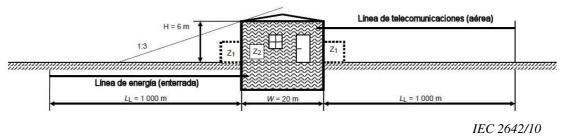
E.1 GENERALIDADES

En este anexo se estudian los casos relativos a una vivienda rural, un edificio de oficinas, un hospital y un edificio de viviendas con el objeto de mostrar:

- como calcular el riesgo y determinar la necesidad de protección;
- la contribución de los diferentes componentes del riesgo al riesgo total;
- el efecto de las diferentes medidas de protección en la mitigación del riesgo;
- el método de selección de las medidas de protección, teniendo en cuenta el costo efectividad.

NOTA: Este Anexo presenta datos hipotéticos para todos los casos. Está destinado a proporcionar información sobre la evaluación del riesgo con el fin de mostrar los principios de esta parte de la Norma IEC 62305. No está destinado a tratar todas las condiciones que existen en todos los sistemas o edificios.

E.2 VIVIENDA RURAL


Como primer caso de estudio se ha considerado una vivienda rural (Figura E.1).

Las pérdidas de vidas humanas (L1) y las pérdidas económicas (L4) son pertinentes para este tipo de estructura.

Se requiere evaluar la necesidad de protección. Esto implica la necesidad de determinar solamente el riesgo R_1 para la perdida de vidas humanas (L1) con los componentes de riesgo R_A , R_B , R_U y R_V (de acuerdo con la Tabla 2) y compararlo con el riesgo tolerable $R_T = 10^{-5}$ (de acuerdo con la Tabla 4). Deben seleccionarse las medidas de protección adecuadas que mitiguen el riesgo.

Siguiendo la decisión tomada por el propietario que una evaluación económica no es requerida, el riesgo R₄ para las pérdidas económicas (L4) no es considerado.

Leyenda:

- Z₁ Exterior;
- Z₂ Bloque de habitaciones.

FIGURA E.1 – Vivienda Rural

E.2.1 Datos relevantes y características

La vivienda rural esta localizada en terreno plano sin algunas estructuras vecinas. La densidad de descargas de rayo es $N_G = 4$ descargas por km^2 por año. Cinco personas viven en la vivienda. Este es también el número total de personas a ser considerado, porque se asume que no hay ninguna persona en el exterior de la vivienda durante una tormenta.

Los datos de la vivienda y sus alrededores están dados en la Tabla E.1.

Los datos para las líneas que ingresan y sus sistemas internos conectados están dados para la línea de energía en la Tabla E.2 y para la línea de telecomunicaciones en la Tabla E.3.

TABLA E.1 – Vivienda Rural: Medio ambiente y características de la estructura

Parámetro	Observación	Símbolo	Valor	Referencia
Densidad de descargas a tierra (1/km²/año)		N_{G}	4,0	
Dimensiones de la estructura (m)	-	L, W, H	15, 20, 6	
Factor de localización de la estructura	Estructura Aislada	C_D	1	Tabla A.1
SPCR	Ninguno	P_{B}	1	Tabla B.2
Enlace equipotencial	Ninguno	P _{EB}	1	Tabla B.7
Apantallamiento externo espacial de la estructura	Ninguno	K_{S1}	1	Ecuación (B.5)

TABLA E.2 – Vivienda Rural: Línea de energía

Parámetro	Observación	Símbolo	Valor	Referencia
Longitud (m) ^a		L _L	1 000	
Factor de instalación	Enterrada	C _I	0,5	Tabla A.2
Factor de tipo de línea	Línea de BT	C_{T}	1	Tabla A.3
Factor ambiental de la línea	Rural	CE	1	Tabla A.4
Apantallamiento de la línea	Ninguno	R_S	-	Tabla B.8
Dantalla accepta a ticana aigleacionte	Ninguno	C_{LD}	1	Tabla B.4
Pantalla, puesta a tierra, aislamiento		C _L I	1	
Estructura adyacente	Ninguna	L_J, W_J, H_J	-	
Factor de localización de la estructura		C_{DJ}	-	Tabla A.1
Tensión soportada del sistema interno (kV)		Uw	2,5	
		K _{S4}	0,4	Ecuación (B.7)
	Parámetros resultantes	P_{LD}	1	Tabla B.8
	resultantes	P_{LI}	0,3	Tabla B.9

FIGURA E.3 – Vivienda rural: Línea de telecomunicaciones (TLC)

Parámetro	Observación	Símbolo	Valor	Referencia
Longitud (m) ^a		L_{L}	1 000 m	
Factor de instalación	Aérea	C_1	1	Tabla A.2
Factor de tipo de línea	Línea de comunicaciones	C_{T}	1	Tabla A.3
Factor ambiental de la línea	Rural	CE	1	Tabla A.4
Apantallamiento de la línea	Ninguno	R_S	-	Tabla B.8
Dontalla muesta e tiema eiglemiente	Ninguno	$C_{ t LD}$	1	Tabla B.4
Pantalla, puesta a tierra, aislamiento		C _{LI}	1	
Estructura adyacente	Ninguna	L_{J}, W_{J}, H_{J}	-	
Factor de localización de la estructura	Estructura aislada	C_{DJ}	-	Tabla A.1
Tensión soportada del sistema interno (kV)		Uw	1,5	
		K _{S4}	0,67	Ecuación (B.7)
	Parámetros resultantes	P_{LD}	1	Tabla B.8
	rosartantos	P _{LI}	0,5	Tabla B.9
a Como la longitud de la línea es desconocida,	se asume que $L_L = 1.00$	00 m (Capítulo	A.4 y Capíti	alo A.5)

E.2.2 Definición de las zonas en la vivienda rural

Las siguientes zonas principales pueden ser definidas:

- Z₁ (Fuera del edificio);
- Z₂ (Dentro del edificio).

Para la Z_1 se asume, que no hay gente en el exterior de la estructura. Por lo tanto el riesgo de choque en las personas $R_A = 0$. Porque R_A es la única componente fuera de la estructura, la zona Z_1 es despreciada completamente.

Dentro del edificio solamente hay definida una zona Z₂, tomando en cuenta que

- Ambos sistemas internos (energía y telecomunicaciones) se extienden a través del edificio,
- No existe pantalla espacial,

- La estructura es un compartimiento a prueba de fuego único,
- Las pérdidas se asumen como constantes en todo el edificio y corresponden a los valores típicos medios de la Tabla C.1.

Los factores resultantes validos para la zona Z₂ son presentados en la Tabla E.4.

TABLA E.4 – Vivienda rural – Factores validos para la zona Z2 (dentro del edificio)

Parámet	ro de entrada	Comentario	Símbolo	Valor	Referencia	
Tipo de piso		Linóleo	r_{t}	10-5	Tabla C.3	
Protección co (descarga en 1	ontra el choque la estructura)	Ninguna	P_{TA}	1	Tabla B.1	
Protección co (descarga en 1	ontra el choque la línea)	Ninguna	P_{TU}	1	Tabla B.6	
Riesgo de inc	endio	Ninguno	$r_{ m f}$	10-3	Tabla C.5	
Protección co	ontra el fuego	Ninguna	$r_{\rm p}$	1	Tabla C.4	
Pantalla espac	cial interna	Ninguna	K_{S2}	1	Ecuación (B.6)	
Alambrado Energía interno		Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,2	Tabla B.5	
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3	
Telecomuni	Alambrado interno	Sin pantalla (grandes bucles mayores de 10 m ²)	K _{S3}	1	Tabla B.5	
caciones	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3	
		Peligro especial: ninguno	$h_{\rm Z}$	1	Tabla C.6	
I 1. Dárdido d	le vidas humanas	D1: Debido a la tensión de contacto y tensión de paso	L_{T}	10-2		
L1. Ferdida d	ie vidas numanas	D2: debido al daño físico	L_{F}	10-1	Tabla C.2	
		D3: debido a falla de los sistemas internos	Lo	-		
Factor por personas en la zona		$n_z/n_t \times t_z/8760 = 5/5 \times 8760/8760$	=	1		
			L_{A}	10-7	Ecuación (C.1)	
		Parámetros resultantes	L _U	10-7	Ecuación (C.2)	
			L_{B}	10-4	Ecuación (C.3)	
			${\tt L}_{\tt V}$	10-4	Ecuación (C.3)	

E.2.3 Cálculo de las cantidades relevantes

Los cálculos de las áreas equivalentes de exposición son presentados en la Tabla E.5 y el número esperado de eventos peligrosos en la Tabla E.6.

TABLA E.5 – Vivienda rural – Áreas de exposición de la estructura y las líneas

	Símbolo	Resultado m ²	Ecuación de referencia	Ecuación
Estructura	A_{D}	$2,58 \times 10^3$	(A.2)	$A_D = L \times W + 2 \times (3 \times H) \times (1 + W) + \pi \times (3 \times H)^2$
Estructura	A_{M}	-	(A.7)	No relevante.
I (1.	A _{L/P}	$4,00 \times 10^4$	(A.9)	$A_{L/P} = 40 \text{ x } L_L$
Línea de	$A_{\rm I/P}$	$4,00 \times 10^6$	(A.11)	$A_{I/P} = 4\ 000\ x\ L_L$
energía	$A_{\mathrm{DJ/P}}$	0	(A.2)	No hay estructura adyacente.
I (d- 4-1-	$A_{L/T}$	$4,00 \times 10^4$	(A.9)	$A_{L/T} = 40 \text{ x } L_L$
Línea de tele- comunicaciones	$A_{I/T}$	$4,00 \times 10^6$	(A.11)	$A_{I/T} = 4\ 000\ x\ L_L$
comunicaciones	$A_{\mathrm{DJ/T}}$	0	(A.2)	No hay estructura adyacente

TABLA E.6 – Vivienda rural – Número esperado de eventos peligrosos

	Símbolo	Resultado m ²	Ecuación de referencia	Ecuación
Estructura	N_D	1,03 x 10 ⁻²	(A.4)	$N_D = N_G \times A_D \times C_D \times 10^{-6}$
Estructura	N_{M}	-	(A.6)	No relevante.
Línea de	N _{L/P}	8,00 x 10 ⁻²	(A.8)	$N_{L/P} = N_G \times A_{L/P} \times C_{I/P} \times C_{E/P} \times C_{T/P} \times 10^{-6}$
energía	N _{I/P}	8,00	(A.10)	$N_{I/P} = N_G \times A_{I/P} \times C_{I/P} \times C_{E/P} \times C_{T/P} \times 10^{-6}$
ellergia	$N_{\mathrm{DJ/P}}$	0	(A.5)	No hay estructura adyacente.
Límas da tala	N _{L/T}	1,60 x 10 ⁻¹	(A.8)	$N_{L/T} = N_G \times A_{L/T} \times C_{I/T} \times C_{E/T} \times C_{T/T} \times 10^{-6}$
Línea de tele- comunicaciones	N _{I/T}	16	(A.10)	$N_{I/T} = N_G \times A_{I/T} \times C_{I/T} \times C_{E/T} \times C_{T/T} \times 10^{-6}$
comunicaciones	$N_{\mathrm{DJ/T}}$	0	(A.5)	No hay estructura adyacente

E.2.4 Riesgo R₁ – Determinación de la necesidad de protección

El riesgo R_1 puede ser expresado de acuerdo a la ecuación (1) por la siguiente suma de componentes:

$$R_1 = R_A + R_B + R_{U/P} + R_{V/P} + R_{U/T} + R_{V/T}$$

Los componentes del riesgo son evaluados de acuerdo con la Tabla 6.

Los componentes involucrados y la evaluación del riesgo están dados en la Tabla E.7.

TABLA E.7 – Vivienda rural – Riesgo R_1 para la estructura sin protección (valores x 10^{-5})

	Símbolo	\mathbf{Z}_1	\mathbf{Z}_2	Estructura
D1	R_{A}	-	≈ 0	≈ 0
Heridas	$R_{U} = R_{U/P} + R_{U/T}$		0,002	0,002
D2	R_{B}		0,103	0,103
Daño Físico	$R_{V} = R_{V/P} + R_{V/T}$		2,40	2,40
	Total	=	2,51	$R_1 = 2,51$
Nivel Tolerable		R ₁ > R _T : S protección c	Se requiere ontra el rayo	$R_T = 1$

Debido a que el Riesgo R_1 = 2,51 x 10^{-5} es mayor que el valor tolerable R_T = 10^{-5} , se requiere protección contra el rayo para la estructura

E.2.5 Riesgo R₁ – Selección de las medidas de protección

De acuerdo con la Tabla E.7 las principales contribuciones al valor del riesgo están dadas por:

- La componente Ry (descarga del rayo en las líneas) del 96 %;
- La componente R_B (descarga del rayo en la estructura) del 4 %.

Para reducir el riesgo R1 a un valor tolerable, deberían ser consideradas las medidas de protección que influyen sobre las componentes R_V y R_B. Medidas apropiadas incluyen:

- a) La instalación de DPSs de un NPCR IV en la línea de entrada (enlace equipotencial contra el rayo) para proteger las líneas de energía y de telecomunicaciones en la vivienda. De acuerdo con la Tabla B.7 esto reduce el valor de P_{EB} (debido a los DPSs instalados en las líneas conectadas) de 1 a 0,05 y los valores de P_U y P_V por el mismo factor;
- b) Instalando un SPCR de Clase IV (obligatorio y que comprende el enlace equipotencial contra el rayo). De acuerdo con las Tablas B.2 y B.7 esto reduce el valor de P_B de 1 a 0,2 y el valor de P_{EB} (debido a los DPs s instalados en las líneas conectadas) de 1 a 0,05 y los valores de P_U y P_V por el mismo factor.

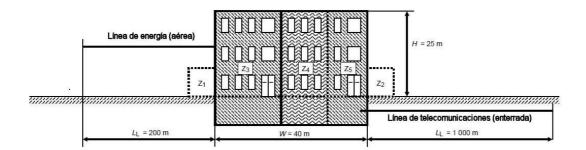
IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

Introduciendo estos valores en las ecuaciones, son obtenidos los nuevos valores de los componentes del riesgo, como se muestra en la Tabla E.8.

TABLA E.8 – Vivienda rural: Componentes relevantes del riego R₁ para la estructura protegida

	Símbolo	Resultado del caso a) x (10 ⁻⁵⁾	Resultado del caso b) x (10 ⁻⁵⁾
D1 Heridas	R_A	pprox 0	≈ 0
debido al choque	$R_{\rm U} = R_{\rm U/P} + R_{\rm U/T}$	≈ 0	≈ 0
D2	R_{B}	0,103	0,021
Daño Físico	$R_{ m V}$	0,120	0,120
Total	\mathbf{R}_1	0,223	0,141

La solución a adoptar depende del mejor compromiso entre los aspectos técnicos y económicos.


E.3 EDIFICIO DE OFICINAS

El segundo estudio de caso concierne a un edificio de oficinas que comprende los archivos, las oficinas y un centro de computo (Figura E.2)

La pérdida de vidas humanas (L1) y las pérdidas económicas (L4) son aplicables a este tipo de estructura.

Es necesario evaluar la necesidad de protección. Esto implica la determinación de solamente el valor del riesgo R1 para la pérdida de vidas humanas (L1) con los componentes de riesgo R_A , R_B , R_U y R_V (de acuerdo con la Tabla 2) y compararlo con el valor de riesgo tolerable $R_T = 10^{-5}$ (de acuerdo con la Tabla 4). Las medidas de protección adecuadas serán seleccionadas para reducir el riesgo por debajo del riesgo tolerable.

Siguiendo la decisión tomada por el propietario, no es requerida una evaluación económica; por lo tanto, el riesgo R4 para las pérdidas económicas (L4) no será considerado.

IEC 2643/10

Leyenda

Z₁: Entrada (exterior)
Z₂: jardín (interior)
Z₃: Archivo
Z₄: Oficinas

Z₅: Centro de computo

FIGURA E.2 – Edificio de oficinas

E.3.1 Datos relevantes y características

El edificio de oficinas está localizado en terreno plano sin estructuras vecinas. La densidad de descargas de rayos en $N_G = 4$ descargas por km^2 por año.

Los datos del edificio y sus alrededores están dados en la Tabla E.9.

Los datos de las líneas entrantes y sus sistemas internos conectados están dados para la línea de energía en la Tabla E.10 y para la línea de telecomunicaciones en la Tabla E.11.

TABLA E.9 – Edificio de oficinas: Medio ambiente y características de la estructura

Parámetro	Observación	Símbolo	Valor	Referencia
Densidad de descargas a tierra (1/km²/año)		N_{G}	4,0	
Dimensiones de la estructura (m)	ı	L, W, H	20, 40, 25	
Factor de localización de la estructura	Estructura Aislada	C_D	1	Tabla A.1
SPCR	Ninguno	P_{B}	1	Tabla B.2
Enlace equipotencial	Ninguno	P_{EB}	1	Tabla B.7
Apantallamiento externo espacial de la estructura	Ninguno	K_{S1}	1	Ecuación (B.5)

TABLA E.10 – Edificio de oficinas: Línea de energía

Parámetro	Observación	Símbolo	Valor	Referencia
Longitud (m)		L_{L}	200	
Factor de instalación	Aérea	CI	1	Tabla A.2
Factor de tipo de línea	Línea de BT	C_{T}	1	Tabla A.3
Factor ambiental de la línea	Rural	C_{E}	1	Tabla A.4
Apantallamiento de la línea (Ω/km)	Ninguno	R_S	-	Tabla B.8
Dentelle mueste e tienne eiglemiente	Ninguno	$C_{ t LD}$	1	Tabla B.4
Pantalla, puesta a tierra, aislamiento		CLI	1	1 abia b. 4
Estructura adyacente	Ninguna	L_{J}, W_{J}, H_{J}	-	
Factor de localización de la estructura	Ninguno	C_{DJ}	-	Tabla A.1
Tensión soportada del sistema interno (kV)		Uw	2,5	
		K _{S4}	0,4	Ecuación (B.7)
	Parámetros resultantes	P _{LD}	1	Tabla B.8
		P_{LI}	0,3	Tabla B.9

TABLA E.11 – Edificio de oficinas: Línea de telecomunicaciones

Parámetro	Observación	Símbolo	Valor	Referencia
Longitud (m)		L_{L}	1 000	
Factor de instalación	Enterrada	C_1	0,5	Tabla A.2
Factor de tipo de línea	Línea de comunicaciones	C_{T}	1	Tabla A.3
Factor ambiental de la línea	Rural	CE	1	Tabla A.4
Apantallamiento de la línea (Ω/km)	Ninguno	R_S	-	Tabla B.8
Pantalla, puesta a tierra, aislamiento	Ninguno	$C_{ t LD}$	1	Tabla B.4
r antana, puesta a tierra, aistannento	Ninguno	C_{LI}	1	Tabla D.4
Estructura adyacente	Ninguna	L_J, W_J, H_J	-	
Factor de localización de la estructura	Ninguno	C_{DJ}	-	Tabla A.1
Tensión soportada del sistema interno (kV)		Uw	1,5	
		K_{S4}	0,67	Ecuación (B.7)
	Parámetros resultantes	P_{LD}	1	Tabla B.8
		P_{LI}	0,5	Tabla B.9

E.3.2 Definición de las zonas en el edificio

Las siguientes zonas son definidas:

- Z₁ (Área de la entrada exterior)
- Z₂ (Jardín exterior)
- Z₃ (Archivo)
- Z₄ (Oficinas)
- Z₅ (Centro de cómputo)

Tomando en cuenta que:

- El tipo de superficie es diferente en el área de entrada exterior, el jardín exterior y dentro de la estructura;
- La estructura está dividida en dos compartimientos a prueba de fuego separados: el primero es el archivo (Z_3) y el segundo es las oficinas junto con el centro de cómputo $(Z_4$ y $Z_5)$;

- En las zonas internas, Z₃, Z₄ y Z₅, los sistemas internos están conectados a las líneas de energía, así como a las líneas de telecomunicaciones que existen;
- No existe pantalla espacial.

En las diferentes zonas, dentro y fuera del edificio de oficinas, se debe considerar un número total de 200 personas.

El número de personas relacionado a cada zona es diferente. La distribución dentro de las zonas individuales es mostrada en la Tabla E.12. Estos valores son utilizados para subdividir el valor total de las pérdidas en fracciones para cada zona.

TABLA E.12 – Edificio de oficinas – Distribución de personas dentro de las zonas

Zona	Número de personas	Duración de la presencia
Z ₁ (entrada exterior)	4	8 760
Z ₂ (jardín exterior)	2	8 760
Z ₃ (archivo)	20	8 760
Z ₄ (oficinas)	160	8 760
Z ₅ (centro de cómputo)	14	8 760
Total	$n_t = 200$	

Según la estimación de las medidas de protección del diseñador, los valores promedios de las pérdidas relativas anuales son para el riesgo R1 (véase la Tabla C.1) para tota la estructura son:

- $L_T = 10^{-2}$ (fuera de la estructura),
- $L_T = 10^{-2}$ (dentro de la estructura),
- $L_F = 0.02$ clasificado como "edificio comercial".

Los valores globales son reducidos para zona tomando en cuenta en número de personas potencialmente en peligro en la zona individual relacionada con el número total de personas consideradas.

Las características resultantes de las zonas Z₁ a Z₅ están dadas en las Tablas E.13 a E.17.

TABLA E.13 – Edificio de oficinas – Factores válidos par la Zona Z₁ (Área de entrada en el exterior)

Parámetro de entrada	Comentario	Símbolo	Valor	Referencia
Tipo de piso	Mármol	\mathbf{r}_{t}	10-3	Tabla C.3
Protección contra el choque	Ninguna	P_{TA}	1	Tabla B.1
Riesgo de incendio	Ninguno	\mathbf{r}_{f}	0	Tabla C.5
Protección contra el fuego	Ninguna	$r_{\rm p}$	1	Tabla C.4
Pantalla espacial interna	Ninguna	K_{S2}	1	Ecuación
	K S2		1	(B.6)
	Peligro especial: ninguno	h_Z	1	Tabla C.6
	D1: Debido a la tensión de contacto y	Ţ	10-2	
L1: Pérdida de vidas humanas	tensión de paso	L_{T}	10	
L1: Ferdida de vidas numanas	D2: debido al daño físico	L_{F}	-	Tabla C.2
	D3: debido a falla de los sistemas	Lo		
	internos	LO	-	
Factor por personas en la zona	$n_z/n_t \times t_z/8760 = 4/200 \times 8760/8760$	-	0,02	

TABLA E.14 – Edificio de oficinas – Factores válidos par la Zona Z₂ (jardín en el exterior)

Parámetro de entrada	Comentario	Símbolo	Valor	Referencia
Tipo de piso	Pasto	\mathbf{r}_{t}	10-2	Tabla C.3
Protección contra el choque	Valla (reja)	P_{TA}	0	Tabla B.1
Riesgo de incendio	Ninguno	\mathbf{r}_{f}	0	Tabla C.5
Protección contra el fuego	Ninguna	$r_{\rm p}$	1	Tabla C.4
Pantalla espacial interna	Ninguna	K_{S2}	1	Ecuación
	K §2		1	(B.6)
	Peligro especial: ninguno	h_Z	1	Tabla C.6
	D1: Debido a la tensión de contacto y	L_{T}	10-2	
L1: Pérdida de vidas humanas	tensión de paso	LT	10	
L1. Ferdida de vidas fidinarias	D2: debido al daño físico	$L_{\rm F}$	-	Tabla C.2
	D3: debido a falla de los sistemas	Τ.		
	internos	Lo	_	
Factor por personas en la zona	$n_z/n_t \times t_z/8760 = 2/200 \times 8760/8760$	-	0,01	

TABLA E.15 – Edificio de oficinas – Factores validos para la zona Z₃ (Archivo)

Parámet	ro de entrada	Comentario	Símbolo	Valor	Referencia
Tipo de piso		Linóleo	\mathbf{r}_{t}	10-5	Tabla C.3
Protección co (descarga en	ontra el choque la estructura)	Ninguna	P_{TA}	1	Tabla B.1
Protección co (descarga en	ontra el choque la línea)	Ninguna	P_{TU}	1	Tabla B.6
Riesgo de inc	endio	Alto	\mathbf{r}_{f}	10-1	Tabla C.5
Protección co	ontra el fuego	Ninguna	$r_{\rm p}$	1	Tabla C.4
Pantalla espa	cial interna	Ninguna	K_{S2}	1	Ecuación (B.6)
Energía	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,2	Tabla B.5
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
Telecomuni caciones	Alambrado interno	Sin pantalla (grandes lazos → 10 m²)	K_{S3}	1	Tabla B.5
caciones	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
		Peligro especial: pánico ligero	$h_{\rm Z}$	2	Tabla C.6
L1: Pérdida de vidas humanas		D1: Debido a la tensión de contacto y tensión de paso	L _T	10-2	
		D2: debido al daño físico	L_{F}	0,02	Tabla C.2
		D3: debido a falla de los sistemas internos	Lo	-	
Factor por pe	rsonas en la zona	$n_z/n_t \times t_z/8760 = 20/200 \times 8760/8760$	-	0,10	

TABLA E.16 – Edificio de oficinas – Factores validos para la zona Z₄ (Oficinas)

Parámet	tro de entrada	Comentario	Símbolo	Valor	Referencia
Tipo de piso		Linóleo	r_{t}	10-5	Tabla C.3
Protección con (descarga en la	*	Ninguna	P_{TA}	1	Tabla B.1
Protección con (descarga en la	*	Ninguna	P_{TU}	1	Tabla B.6
Riesgo de ince	endio	Bajo	$r_{ m f}$	10-3	Tabla C.5
Protección con	ntra el fuego	Ninguna	r_{p}	1	Tabla C.4
Pantalla espac	ial interna	Ninguna	K_{S2}	1	Ecuación (B.6)
Energía	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,2	Tabla B.5
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
Telecomuni caciones	Alambrado interno	Sin pantalla (grandes lazos > 10 m ²)	K_{S3}	1	Tabla B.5
caciones	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
		Peligro especial: pánico ligero	$h_{\rm Z}$	2	Tabla C.6
L1: Pérdida de vidas humanas		D1: Debido a la tensión de contacto y tensión de paso	L_{T}	10-2	
		D2: debido al daño físico	L_{F}	0,02	Tabla C.2
		D3: debido a falla de los sistemas internos		-	
Factor por per	sonas en la zona	$n_z/n_t \times t_z/8760 = 160/200 \times 8760/8760$	-	0,80	

TABLA E.17 – Edificio de oficinas – Factores validos para la zona Z5 (Centro de cómputo)

Parámetro de entrada		Comentario	Símbolo	Valor	Referencia
Tipo de piso		Linóleo	r_{t}	10-5	Tabla C.3
	ontra el choque la estructura)	Ninguna	P_{TA}	1	Tabla B.1
Protección co (descarga en	ontra el choque la línea)	Ninguna	P_{TU}	1	Tabla B.6
Riesgo de inc	endio	Bajo	\mathbf{r}_{f}	10^{-3}	Tabla C.5
Protección co	ontra el fuego	Ninguna	r_p	1	Tabla C.4
Pantalla espa	cial interna	Ninguna	K_{S2}	1	Ecuación (B.6)
Energía	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,2	Tabla B.5
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
Telecomuni	Alambrado interno	Sin pantalla (grandes lazos > 10 m ²)	K _{S3}	1	Tabla B.5
caciones	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
		Peligro especial: pánico ligero	$h_{\rm Z}$	2	Tabla C.6
L1: Pérdida de vidas humanas		D1: Debido a la tensión de contacto y tensión de paso	L_{T}	10-2	
		D2: debido al daño físico	L_{F}	0,02	Tabla C.2
		D3: debido a falla de los sistemas internos	Lo	-	
Factor por pe	rsonas en la zona	$n_z/n_t \times t_z/8760 = 14/200 \times 8760/8760$	-	0,07	

E.3.3 Cálculo de las cantidades relevantes

Los cálculos de las áreas equivalentes de exposición son presentados en la Tabla E.18 y el número esperado de eventos peligrosos en la Tabla E.19.

TABLA E.18 – Edificio de oficinas – Áreas de exposición de la estructura y las líneas

	Símbolo	Resultado m ²	Ecuación de referencia	Ecuación		
Estructura	A_D	2,75 x 10 ⁴	(A.2)	$A_D = L \times W + 2 \times (3 \times H) \times (L + W) + \pi \times (3 \times H)^2$		
	A _M	-	(A.7)	No relevante.		
Línea de	A _{L/P}	$8,00 \times 10^3$	(A.9)	$A_{L/P} = 40 \text{ x } L_L$		
energía	$A_{I/P}$	$8,00 \times 10^5$	(A.11)	No es relevante		
ellergia	$A_{\mathrm{DA/P}}$	0	(A.2)	No hay estructura adyacente.		
Línea de tele-	$A_{L/T}$	$4,00 \times 10^4$	(A.9)	$A_{L/T} = 40 \text{ x } L_L$		
comunicaciones	$A_{I/T}$	$4,00 \times 10^6$	(A.11)	No es relevante		
Comunicaciones	$A_{DA/T}$	0	(A.2)	No hay estructura adyacente		

TABLA E.19 – Edificio de oficinas – Número esperado de eventos peligrosos

	Símbolo	Resultado m ²	Ecuación de referencia	Ecuación
Estmoturo	N_D	1,10 x 10 ⁻¹	(A.4)	$N_D = N_G \times A_D \times C_D \times 10^{-6}$
Estructura $N_{\rm M}$		-	(A.6)	No relevante.
I (d.	$N_{L/P}$	3,20 x 10 ⁻²	(A.8)	$N_{L/P} = N_G \times A_{L/P} \times C_{I/P} \times C_{E/P} \times C_{T/P} \times 10^{-6}$
Línea de	$N_{I/P}$	3,20	(A.10)	No es relevante
energía	$N_{DA/P}$	0	(A.5)	No hay estructura adyacente.
I (man da 4a1a	$N_{L/T}$	8,00 x 10 ⁻²	(A.8)	$N_{L/T} = N_G \times A_{L/T} \times C_{I/T} \times C_{E/T} \times C_{T/T} \times 10^{-6}$
Línea de tele- comunicaciones	$N_{I/T}$	8,00	(A.10)	No es relevante
Comunicaciones	$N_{DA/T}$	0	(A.5)	No hay estructura adyacente

E.3.4 Riesgo R₁ – Determinación de las necesidades de protección

Los valores de los componentes del riesgo para las estructura sin protección son presentados en la Tabla E.20.

TABLA E.20 – Edificio de oficinas: Riesgo R1 para la estructura sin protección (valores x 10⁻⁵)

Tipo de daño	Símbolo	\mathbf{Z}_1	\mathbf{Z}_2	Z ₃	\mathbf{Z}_4	\mathbf{Z}_5	Estructura
D1	R_A	0,002	0	≈ 0	0,001	≈ 0	0,003
Heridas debido al choque	$R_{\rm U} = R_{\rm U/P} + R_{\rm U/T}$			≈ 0	0,001	≈ 0	0,001
D2	R_{B}			4,395	0,352	0,031	4,778
Daño Físico	$R_{V} = R_{V/P} + R_{V/T}$			4,480	0,358	0,031	4,870
Total		0,002	0	8,876	0,712	0,062	$R_1 = 9,65$
Nivel Tolerable $R_1 > R_T$: Se requiere protección contra el rayo				$R_T = 1$			

Debido a que el valor del riesgo $R_1 = 9,65 \times 10^{-5}$ es mayor que el valor del riesgo tolerable $R_T = 10^{-5}$, la protección contra el rayo es requerida.

E.3.5 Riesgo R₁ – Selección de las medidas de protección

El riesgo R_1 en la estructura esta concentrado principalmente en la zona Z_3 debido a los daños físicos causados por una descarga directa en la estructura o en las líneas conectadas (los componentes $R_B \approx 49 \%$ y Rv $\approx 50 \%$ juntos cubren el 99 % del riesgo total) (Véase la Tabla E.20)

Estos componentes dominantes del riesgo pueden ser reducidos por las siguientes medidas:

- Protegiendo todo el edificio con un SPCR conforme con la Norma IEC 62305-3 para reducir la componente R_B para la probabilidad P_B . La realización obligatoria de la conexión equipotencial contra el rayo en la entrada reduce igualmente las componentes R_U y R_V de la probabilidad P_{EB} .
- Equipar la zona Z_3 (Archivos) de medidas de protección para reducir las consecuencias del fuego (por ejemplo extinguidores, sistema automático de detección del incendio, etc.). Esto permite reducir los componentes R_U y R_V por el factor de reducción r_p .
- Asegurar la conexión equipotencial contra el rayo conforme la Norma IEC 62305-3 a la entrada del edificio. Esto reducirá solamente los componentes $R_{\rm U}$ y $R_{\rm V}$ a través de la probabilidad $P_{\rm EB}$.

Asociando los diferentes elementos de estas medidas de protección, las soluciones siguientes pueden ser adoptadas:

Solución a)

- Protección del edificio con un SPCR de Clase III conforme la Norma IEC 62305-3, para reducir la componente R_B ($P_B = 0,1$).
- El SPCR comprende la conexión equipotencial obligatoria a la entrada con dispositivos de protección contra las sobretensiones DPSs diseñados para un nivel de protección contra el rayo III ($P_{EB} = 0.05$) y reducir los componentes R_U y R_V .

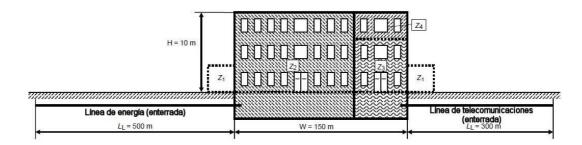
IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

Solución b)

- Protección del edificio con un SPCR de Clase IV conforme la Norma IEC 62305-3, para reducir la componente R_B ($P_B = 0.2$).
- El SPCR comprende la conexión equipotencial obligatoria a la entrada con dispositivos de protección contra las sobretensiones DPSs diseñados para un nivel de protección contra el rayo IV ($P_{EB} = 0.05$) y reducir los componentes R_U y R_V .
- Utilización de sistemas de extinción (o de detección) de incendios para reducir las componentes R_B y R_V . Instalación de un sistema manual en la zona Z_3 (Archivos) ($r_p = 0.5$).

Para ambas soluciones, los valores del riesgo de la Tabla E.20 cambiarán a los valores reducidos reportados en la Tabla E.21.

TABLA E.21 – Edificio de oficinas: Riesgo R₁ para la estructura protegida (Valores por 10⁻⁵)


	\mathbf{Z}_1	\mathbb{Z}_2	Z ₃	\mathbb{Z}_4	Z 5	Total	Tolerable	Resultado
Solución a)	≈ 0	0	0,664	0,053	0,005	$R_1 = 0,722$	$R_T = 1$	$R_1 \leq R_T$
Solución b)	≈ 0	0	0,552	0,089	0,008	$R_1 = 0.648$	$R_T = 1$	$R_1 \leq R_T$

Las dos soluciones reducen el riesgo por debajo del valor tolerable. La solución a adoptar depende del mejor compromiso entre los aspectos técnicos y económicos.

E.4 HOSPITAL

Un estudio de caso más complejo concierne a un establecimiento hospitalario normal que comprende un bloque de habitaciones, un bloque de sala de operaciones y una unidad de cuidados intensivos.

Las pérdidas de vidas humanas (L1) y las pérdidas económicas (L4) son relevantes para este tipo de instalación. Es necesario evaluar la necesidad de protección y el costo beneficio de las medidas de protección; estos requieren la evaluación de los riesgos R_1 y R_4 .

IEC 2644/10

Leyenda:

Z₁: Exterior

Z2: Bloque de habitaciones
Z₃: Bloque de sala de operaciones
Z₄: Unidad de cuidados intensivos

FIGURA E.3 - Hospital

E.4.1 Datos relevantes y características

El hospital está localizado en terreno plano sin estructuras vecinas. La densidad de descargas de rayos en $N_G = 4$ descargas por km^2 por año.

Los datos del edificio y sus alrededores están dados en la Tabla E.22.

Los datos de las líneas entrantes y sus sistemas internos conectados están dados para la línea de energía en la Tabla E.23 y para la línea de telecomunicaciones en la Tabla E.24.

Descargado por Temporales (todotemporales@gmail.com)

TABLA E.22 – Hospital: Medio ambiente y características de la estructura

Parámetro	Observación	Símbolo	Valor	Referencia
Densidad de descargas a tierra (1/km²/año)		N_{G}	4,0	
Dimensiones de la estructura (m)	-	L, W, H	50, 150, 10	
Factor de localización de la estructura	Estructura Aislada	C_D	1	Tabla A.1
SPCR	Ninguno	P_{B}	1	Tabla B.2
Enlace equipotencial	Ninguno	P_{EB}	1	Tabla B.7
Apantallamiento externo espacial de la estructura	Ninguno	K_{S1}	1	Ecuación (B.5)

TABLA E.23 – Hospital: Línea de energía

Parámetro	Observación	Símbolo	Valor	Referencia
Longitud (m)		$L_{\rm L}$	500	
Factor de instalación	Enterrada	C_{I}	0,5	Tabla A.2
Factor de tipo de línea	Línea de MT (Con transformador de MT/BT)	C_T	0,2	Tabla A.3
Factor ambiental de la línea	Suburbano	CE	0,5	Tabla A.4
Apantallamiento de la línea (Ω/km)	Línea con pantalla conectada a la misma barra equipotencial que los equipos	Rs	$R_S \leq 1$	Tabla B.8
	Línea con pantalla conectada a la misma barra equipotencial que los equipos	$C_{ t LD}$	1	
Pantalla, puesta a tierra, aislamiento		$C_{\mathtt{LI}}$	0	Tabla B.4
Estructura adyacente (m)	Ninguna	L_J, W_J, H_J	-	
Factor de localización de la estructura	Ninguno	C_{DJ}	-	Tabla A.1
Tensión soportada del sistema interno (kV)		Uw	2,5	
		K_{S4}	0,4	Ecuación (B.7)
	Parámetros resultantes	P_{LD}	0,2	Tabla B.8
	resultances	P_{LI}	0,3	Tabla B.9

FIGURA E.24 – Hospital: Línea de telecomunicaciones

Parámetro	Observación	Símbolo	Valor	Referencia
Longitud (m)		L_{L}	300	
Factor de instalación	Enterrada	C_1	0,5	Tabla A.2
Factor de tipo de línea	Línea de comunicaciones	C_{T}	1	Tabla A.3
Factor ambiental de la línea	Suburbana	$C_{\rm E}$	0,5	Tabla A.4
Apantallamiento de la línea (Ω/km)	Línea con pantalla conectada a la misma barra equipotencial que los equipos	R_S	$1 < R_S \le 5$	Tabla B.8
	Línea con pantalla conectada a la misma barra equipotencial que los equipos	$C_{\mathtt{LD}}$	1	
Pantalla, puesta a tierra, aislamiento		$C_{\mathtt{LI}}$	0	Tabla B.4
Estructura adyacente (m)	Longitud, ancho, altura	L_{J}, W_{J}, H_{J}	20, 30, 5	
Factor de localización de la estructura adyacente	Estructura aislada	C_{DJ}	1	Tabla A.1
Tensión soportada del sistema interno (kV)		Uw	1,5	
	D (K_{S4}	0,67	Ecuación (B.7)
	Parámetros resultantes	P_{LD}	0,8	Tabla B.8
		P_{LI}	0,5	Tabla B.9

E.4.2 Definición de las zonas en el hospital

Las siguientes zonas son definidas:

- Z₁ (Exterior del edificio)
- Z₂ (Bloque de habitaciones)
- Z₃ (Bloque de sala de operaciones)
- Z₄ (Unidad de cuidados intensivos)

Tomando en cuenta lo siguiente:

- El tipo de superficie es diferente fuera de la estructura que dentro de la estructura;
- Existen dos compartimientos a prueba de fuego separados: el primero es el bloque de habitaciones (Z_2) y el segundo es el bloque de sala de operaciones junto con la unidad de cuidados intensivos (Z_3 y Z_4);
- En todas las zonas internas, Z₂, Z₃ y Z₄, los sistemas internos están conectados a las líneas de energía, así como a las líneas de telecomunicaciones que existen;
- No existe pantalla espacial;
- La unidad de cuidados intensivos contiene extensos sistemas electrónicos sensibles y una pantalla espacial puede ser adoptada como medida de protección.

En las diferentes zonas, dentro y fuera del hospital, se debe considerar un número total de 1 000 personas.

El número de personas, la duración de los periodos de presencia y los valores económicos relacionados a cada zona son diferentes. La distribución dentro de las zonas individuales y los valores totales son mostrados en la Tabla E.25. Estos valores son utilizados para subdividir los valores totales de las pérdidas en fracciones para cada zona.

TABLA E.25 – Hospital – Distribución de personas y valores económicos dentro de las zonas

	Número	Duración	Valores económicos en \$ x 106				
Zona	de personas	de la presencia (h/a)	Animales ca	Edificio Cb	Contenido cc	Sistemas internos c _s	Total ct
Z ₁ (exterior del edificio)	10	8 760	-	-	-	-	1
Z ₂ (bloque de habitaciones)	950	8 760	-	70	6	3,5	79,5
Z ₃ (bloque de sala de operaciones)	35	8 760	-	2	0,9	5,5	8,4
Z ₄ (Unidad de cuidados intensivos)	5	8 760	-	1	0,1	1,0	2,1
Total	$n_t = 1 000$	-	0	73	7	10	90,0

Para el riesgo R1, según la evaluación de las medidas de protección contra el rayo por el diseñador, los valores de las pérdidas tipos (valores medios típicos de las pérdidas relativas anuales) según la Tabla C.2 y el factor de aumento para los peligros especiales según la Tabla C.6 son:

-	$L_{\rm T} = 10^{-2}$	en la zona Z_1 en el exterior de la estructura;
-	$L_T = 10^{-2}$	en las zonas Z ₂ , Z ₃ , Z ₄ en el interior de la estructura;
-	$L_F = 10^{-1}$	en las zonas Z ₂ , Z ₃ , Z ₄ en el interior de la estructura;
-	$h_Z = 5$	en las zonas Z ₂ , Z ₃ , Z ₄ en el interior de la estructura debido a
		la dificultad de evacuación;
-	$L_0 = 10^{-3}$	en la zona Z ₂ (bloque de habitaciones);
-	$L_{\rm O} = 10^{-2}$	en la zona Z ₃ (bloque de sala de operaciones) y en la zona Z ₄
		(unidad de cuidados intensivos).

Estos valores de pérdidas tipo son reducidos para cada zona de acuerdo a las ecuaciones (C.1) a (C.4), tomando en cuenta el número total de personas en peligro en la zona individual relacionado con el número total de personas considerado y la duración del tiempo cuando las personas están presentes.

Para el riesgo R₄, los valores de pérdidas tipo de acuerdo con la Tabla C.12 son como sigue:

-	$L_T = 0$	ningún animal en peligro;
-	$L_F = 0.5$	en las zonas Z_2 , Z_3 , Z_4 dentro de la estructura;
-	$L_0 = 10^{-2}$	en las zonas Z_2 , Z_3 , Z_4 dentro de la estructura.

Estos valores de pérdidas tipo fueron reducidos para cada zona de acuerdo con las ecuaciones (C.11) a (C.13), tomando en cuenta el valor en peligro en la zona individual relacionado con el valor total de la estructura (animales, edificio, contenido, sistemas internos y actividades) considerado. El valor en peligro en una zona individual depende del tipo de daño:

-	D1 (herida por choque eléctrico)	valor c _a de los animales solamente;
-	D2 (daño físico)	suma de todos los valores $c_a + c_b + c_c$
		$+c_s$;
-	D3 (falla de sistema interno)	valor c _s de los sistemas internos y sus
		actividades solamente.

Las características resultantes de las zonas Z₁ a Z₄ están dadas en las Tablas E.26 a E.29.

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

TABLA E.26 – Hospital – Factores válidos para la Zona Z₁ (Exterior del edificio)

Parámetro de entrada	Comentario	Símbolo	Valor	Referencia	
Tipo de piso	Concreto	\mathbf{r}_{t}	10-2	Tabla C.3	
Protección contra el choque eléctrico	Ninguna	P_{TA}	1	Tabla B.1	
Riesgo de incendio	Ninguno	\mathbf{r}_{f}	0	Tabla C.5	
Protección contra el fuego	Ninguna	r_{p}	1	Tabla C.4	
Pantalla espacial interna	Ninguna	K_{S2}	1	Ecuación (B.6)	
	Peligro especial: ninguno	$h_{\rm Z}$	1	Tabla C.5	
L1: Pérdida de vidas humanas	D1: Debido a la tensión de contacto y tensión de paso	L_{T}	10-2	Tabla C.2	
	D2: debido al daño físico	L_{F}	0	Tabla C.2	
	D3: debido a falla de los sistemas internos	Lo	0	<u>[</u>	
Factor por personas en la zona	$n_z/n_t \times t_z/8760 = 10/1000 \times 8760/8760$	-	0,01		

TABLA E.27 – Hospital – Factores válidos para la Zona Z₂ (bloque de habitaciones)

Parámetro de entrada		Comentario	Símbolo	Valor	Referencia
Tipo de piso		Linóleo	r_{t}	10-5	Tabla C.3
Protección co eléctrico (des estructura)	ontra el choque carga en la	Ninguna	P_{TA}	1	Tabla B.1
	ontra el choque scarga en la línea)	Ninguna	P_{TU}	1	Tabla B.9
Riesgo de inc	cendio	Ordinario	\mathbf{r}_{f}	10-2	Tabla C.5
Protección co	ontra el fuego	Ninguna	$r_{\rm p}$	1	Tabla C.4
Pantalla espa	cial interna	Ninguna	K_{S2}	1	Ecuación (B.6)
Energía	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,2	Tabla B.5
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
Telecomuni	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,01	Tabla B.5
caciones	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
		Peligro especial: dificultad de evacuación	h_Z	5	Tabla C.6
L1: Pérdida d	le vidas humanas	D1: Debido a la tensión de contacto y tensión de paso	L _T	10-2	Table C 2
		D2: debido al daño físico	$L_{\rm F}$	10-1	Tabla C.2
		D3: debido a falla de los sistemas internos	Lo	10-3	
Factor por pe	rsonas en la zona	$n_z/n_t \times t_z/8760 = 950/1000 \times 8760/8760$	-	0,95	
I.4: Pérdida económicas		D2: debido al daño físico	L_{F}	0,5	
		D2: Factor $(c_a + c_b + c_c + c_s)/c_t = 79,5/90$	-	0,883	T.11. C.12
L4: Perdida e	economicas	D3: debido a falla de los sistemas internos	Lo	10-2	Tabla C.12
		D3: Factor $c_s / c_t = 3.5 / 90$	-	0,039	

TABLA E.28 – Hospital – Factores validos para la zona Z₃ (Bloque de sala de operaciones)

Parámet	ro de entrada	Comentario	Símbolo	Valor	Referencia
Tipo de piso		Linóleo	\mathbf{r}_{t}	10-5	Tabla C.3
Protección co eléctrico (des estructura)	ontra el choque carga en la	Ninguna	P_{TA}	1	Tabla B.1
	ontra el choque scarga en la línea)	Ninguna	P_{TU}	1	Tabla B.9
Riesgo de inc		Bajo	$\mathbf{r}_{\mathbf{f}}$	10-3	Tabla C.5
Protección co	ontra el fuego	Ninguna	r_{p}	1	Tabla C.4
Pantalla espa	cial interna	Ninguna	K_{S2}	1	Ecuación (B.6)
Energía	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,2	Tabla B.5
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
Telecomuni caciones	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K _{S3}	0,01	Tabla B.5
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
		Peligro especial: dificultad de evacuación	h_{Z}	5	Tabla C.6
L1: Pérdida d	le vidas humanas	D1: Debido a la tensión de contacto y tensión de paso	L_{T}	10-2	
		D2: debido al daño físico	L_{F}	10-1	Tabla C.2
		D3: debido a falla de los sistemas internos	Lo	10-2	
Factor por personas en la zona		$n_z/n_t \times t_z/8760 = 35/1000 \times 8$ 760/8760	-	0,035	
		D2: debido al daño físico	L_{F}	0,5	
L4: Pérdida económica		D2: Factor $(c_a + c_b + c_c + c_s)/c_t = 8,4/90$	-	0,093	
		$(c_a + c_b + c_c + c_s)/c_t = 8,4/90$ D3: debido a falla de los sistemas internos	Lo	10-2	Tabla C.12
		D3: Factor $c_s / c_t = 5.5 / 90$	-	0,061	

TABLA E.29 – Hospital – Factores validos para la zona Z4 (Unidad de cuidados intensivos)

Parámet	ro de entrada	Comentario	Símbolo	Valor	Referencia	
Tipo de piso		Linóleo	\mathbf{r}_{t}	10-5	Tabla C.3	
Protección co eléctrico (des estructura)	ontra el choque carga en la	Ninguna	P_{TA}	1	Tabla B.1	
	ontra el choque carga en la línea)	Ninguna	P_{TU}	1	Tabla B.9	
Riesgo de inc		Bajo	$r_{ m f}$	10-3	Tabla C.5	
Protección co	ntra el fuego	Ninguna	r_p	1	Tabla C.4	
Pantalla espa	cial interna	Ninguna	K_{S2}	1	Ecuación (B.6)	
Energía	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,2	Tabla B.5	
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3	
Telecomuni caciones	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,01	Tabla B.5	
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3	
		Peligro especial: dificultad de evacuación	h _Z	5	Tabla C.6	
L1: Pérdida d	le vidas humanas	D1: Debido a la tensión de contacto y tensión de paso	L_{T}	10-2		
		D2: debido al daño físico	L_{F}	10-1	Tabla C.2	
		D3: debido a falla de los sistemas internos	Lo	10-2		
Factor por personas en la zona		$n_z/n_t \times t_z/8 760 = 5/1 000 \times 8$ 760/8 760	-	0,005		
L4: Pérdida económica		D2: debido al daño físico	L_{F}	0,5		
		D2: Factor $(c_a + c_b + c_c + c_s)/c_t = 2,1/90$	-	0,023		
		D3: debido a falla de los sistemas internos	Lo	10-2	Tabla C.12	
		D3: Factor $c_s / c_t = 1,0 / 90$	-	0,011		

E.4.3 Cálculo de las cantidades relevantes

Los cálculos de las áreas equivalentes de exposición son presentados en la Tabla E.30 y el número esperado de eventos peligrosos en la Tabla E.31.

TABLA E.30 – Hospital – Áreas equivalentes de exposición de la estructura y las líneas

	Símbolo	Resultado m ²	Ecuación de referencia	Ecuación
Estructura	A_D	2,23 x 10 ⁴	(A.2)	$A_D = L \times W + 2 \times (3 \times H) \times (L + W) + \pi \times (3 \times H)^2$
	A_{M}	$9,85 \times 10^5$	(A.7)	$A_{\rm M} = 2 \times 500 \times (L + W) + \pi \times 500^2$
Línea de	$A_{L/P}$	$2,00 \times 10^4$	(A.9)	$A_{L/P} = 40 \text{ x } L_L$
	$A_{I/P}$	$2,00 \times 10^6$	(A.11)	$A_{I/P} = 4\ 000\ x\ L_L$
energía	$A_{\mathrm{DJ/P}}$	0	(A.2)	No hay estructura adyacente.
	$A_{L/T}$	1,20 x 10 ⁴	(A.9)	$A_{L/T} = 40 \text{ x } L_L$
Línea de tele-	$A_{I/T}$	$1,20 \times 10^6$	(A.11)	$A_{I/P} = 4\ 000\ x\ L_L$
comunicaciones	$A_{\mathrm{DJ/T}}$	$2,81 \times 10^3$	(A.2)	$A_{DJ/T} = L_J \times W_J + 2 \times (3 \times H_J) \times (L_J + W_J) + \pi \times (3 \times H_J)^2$

TABLA E.31 – Hospital – Número anual esperado de eventos peligrosos

	Símbolo	Resultado 1/a	Ecuación de referencia	Ecuación
Estructura	N_{D}	$8,93 \times 10^{-2}$	(A.4)	$N_D = N_G \times A_{D/B} \times C_{D/B} \times 10^{-6}$
Estructura	N_{M}	3,94	(A.6)	$N_{\rm M} = N_{\rm G} \times A_{\rm M} \times 10^{-6}$
Línea de	$N_{L/P}$	$4,00 \times 10^{-3}$	(A.8)	$N_{L/P} = N_G \times A_{L/P} \times C_{L/P} \times C_{E/P} \times C_{T/P} \times 10^{-6}$
energía	$N_{I/P}$	4,00 x 10 ⁻¹	(A.10)	$N_{I/P} = N_G \times A_{I/P} \times C_{I/P} \times C_{E/P} \times C_{T/P} \times 10^{-6}$
ellergia	$N_{\mathrm{DJ/P}}$	0	(A.5)	No hay estructura adyacente.
Línea de tele-	$N_{L/T}$	1,20 x 10 ⁻²	(A.8)	$N_{L/T} = N_G \times A_{L/T} \times C_{I/T} \times C_{E/T} \times C_{T/T} \times 10^{-6}$
comunicaciones	$N_{I/T}$	1,20	(A.10)	$N_{I/T} = N_G \times A_{I/T} \times C_{I/T} \times C_{E/T} \times C_{T/T} \times 10^{-6}$
comunicaciones	$N_{\mathrm{DJ/T}}$	1,12 x 10 ⁻²	(A.5)	$N_{DJT/T} = N_G x A_{DJ/T} x C_{DJ/T} x C_{T/T} x 10^{-6}$

Riesgo R₁ – Determinación de las necesidades de protección E.4.4

Los valores de las probabilidades P_X están dados en la Tabla E.32 y los componentes del riesgo para las estructura sin protección son presentados en la Tabla E.33.

TABLA E.32 – Hospital: Riesgo R₁ – Valores de la probabilidad P para la estructura sin protección

Tipo de daño	Símbolo	\mathbf{Z}_1	\mathbf{Z}_2	Z ₃	Z 4	Referencia de ecuación	Ecuación
D1	P_A	1		1			
Heridas	$P_{U/P}$			0,2			
debido al choque eléctrico	$P_{U/T}$		0,8				
D2	P_{B}			1			
Daño Físico	$P_{V/P}$			0,2			
Dallo Pisico	$P_{V/T}$			0,8			
	P_{C}			1		(14)	$P_{C} = 1 - (1 - P_{C/P}) x (1 - P_{C/T})$ $P_{C} = 1 - (1 - 1) x (1 - 1)$
D3 Falla de los	P_{M}			0,0064		(15)	$P_{M} = 1 - (1 - P_{M/P}) x (1 - P_{M/T})$ $P_{M} = 1 - (1 - 0,0064) x (1 - 0,00004)$
sistemas	$P_{W/P}$			0,2			
internos	$P_{W/T}$			0,8	•		
	$P_{Z/P}$			0	•		
	P _{Z/T}			0			

TABLA E.33 – Hospital: Riesgo R₁ para la estructura sin protección (valores x 10⁻⁵)

Tipo de daño	Símbolo	\mathbf{Z}_1	\mathbf{Z}_2	\mathbb{Z}_3	\mathbb{Z}_4	Estructura
D1	R_A	0,009	0,000 9	≈ 0	≈ 0	0,010
Heridas por choque eléctrico	$R_{\rm U} = R_{\rm U/P} + R_{\rm U/T}$		≈ 0	≈ 0	≈ 0	≈ 0
D2	R_{B}		42,4	0,156	0,022	42,6
Daño Físico	$R_{V} = R_{V/P} + R_{V/T}$		9,21	0,034	0,005	9,245
D3	R_{C}		8,484	3,126	0,447	12,057
Falla de	R_{M}		2,413	0,889	0,127	3,429
sistemas	$R_{W} = R_{W/P} + R_{W/T}$		1,841	0,678	0,097	2,616
internos	$R_Z = R_{Z/P} + R_{Z/T}$					
	Total	0,009	64,37	4,89	0,698	$R_1 = 69,96$
Ni	Nivel Tolerable $R_1 > R_T : Se \text{ requiere protección} $ rayo			_	contra el	$R_T = 1$

Debido a que el valor del riesgo R_1 = 69,96 x 10^{-5} es mayor que el valor del riesgo tolerable R_T = 10^{-5} , la protección contra el rayo de la estructura es requerida.

E.4.5 Riesgo R₁ – Selección de las medidas de protección

El riesgo R₁ es influenciado principalmente (véase la Tabla E.33):

- Por el daño físico en la zona Z_2 (los componentes $R_B \approx 61\%$ y $R_V \approx 13\%$ del riesgo total);
- Por fallas de los sistemas internos en las zonas Z_2 y Z_3 (los componentes R_C \approx 12 % y R_C \approx 5 % respectivamente) del riesgo total.

Estos componentes dominantes del riesgo pueden ser reducidos por las medidas siguientes:

- Protegiendo todo el edificio con un SPCR conforme con la Norma IEC 62305-3 para reducir la componente R_B para la probabilidad P_B . La realización obligatoria de la conexión equipotencial contra el rayo en la entrada reduce igualmente las componentes R_U y R_V a través de la probabilidad P_{EB} .
- Equipar la zona Z_2 (bloque de habitaciones) con medidas de protección contra las consecuencias del fuego (tales como extinguidores, sistema automático de detección del fuego, etc.). Esto permite reducir los componentes R_B y R_V por el factor de reducción r_D .
- Proporcionar a las zonas Z₃ y Z₄ con una protección de dispositivos de protección contra las sobretensiones coordinados SPDs de acuerdo con la Norma IEC 62305-4 para los sistemas internos de energía y de telecomunicaciones. Esto reducirá las componentes R_C, R_M, R_W a través de la probabilidad P_{DSP}.
- Proporcionar a las zonas Z3 y Z4 con una adecuada pantalla espacial enmallada de acuerdo con la IEC 62305-4. Esto reducirá la componente $R_{\rm M}$ a través de la probabilidad $P_{\rm M}$.

Asociando los diferentes elementos de estas medidas de protección, las soluciones siguientes pueden ser adoptadas:

Solución a)

- Protección del edificio con un SPCR de Clase I ($P_B = 0.02$ incluyendo también $P_{EB} = 0.01$);

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

- Instalación de una protección coordinada de dispositivos de protección contra las sobretensiones DPSs en los sistemas de energía y telecomunicaciones por (1,5x) mejores que el nivel de protección contra el rayo I $(P_{DPS}=0,005)$ en las zonas Z_2, Z_3, Z_4 ;
- Instalación en la zona Z_2 con un sistema automático de detección del fuego $(r_p = 0.2 \text{ para la zona } Z_2 \text{ solamente});$
- Instalación en las zonas Z_3 y Z_4 con una pantalla enmallada con $w_m = 0.5$ m.

Utilizando esta solución los valores del riesgo de la Tabla E.33 cambiarán a los valores reducidos presentados en la Tabla E.34.

TABLA E.34 – Hospital: Riesgo R₁ para la estructura protegida de acuerdo a la solución a) (valores x 10⁻⁵)

Tipo de daño	Símbolo	\mathbf{Z}_1	\mathbb{Z}_2	Z ₃	Z 4	Estructura
D1	R_A	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
Heridas debido al choque eléctrico	$R_{U} = R_{U/P} + R_{U/T}$		≈ 0	≈ 0	≈ 0	≈ 0
D2	R_{B}		0,170	0,003	≈ 0	0,173
Daño Físico	$R_{V} = R_{V/P} + R_{V/T}$		0,018	≈ 0	≈ 0	0,018
D3	R_{C}		0,085	0,031	0,004	0,12
Falla de	R_{M}		0,012	≈ 0	≈ 0	0,012
sistemas	$R_W = R_{W/P} + R_{W/T}$		0,009	0,003	≈ 0	0,004
internos	$R_Z = R_{Z/P} + R_{Z/T}$					
	Total	≈ 0	0,294	0,038	0,005	$R_1 = 0.338$
Ni	vel Tolerable	R ₁ > R _T : Se requiere protección contra el rayo			$R_T = 1$	

Solución b)

- Protección del edificio con un SPCR de Clase I ($P_B = 0.02$ incluyendo también $P_{EB} = 0.01$);
- Instalación de una protección coordinada de dispositivos de protección contra las sobretensiones DPSs en los sistemas de energía y telecomunicaciones por (3x) mejores que el nivel de protección contra el rayo I $(P_{DPS} = 0,001)$ en las zonas Z_2, Z_3, Z_4 ;

Instalación en la zona Z_2 con un sistema automático de detección del fuego $(r_p = 0.2 \text{ para la zona } Z_2 \text{ solamente}).$

Utilizando esta solución los valores del riesgo de la Tabla E.33 cambiarán a los valores reducidos presentados en la Tabla E.35.

TABLA E.35 – Hospital: Riesgo R₁ para la estructura protegida de acuerdo a la solución b) (valores x 10⁻⁵)

Tipo de daño	Símbolo	\mathbf{Z}_1	\mathbf{Z}_2	\mathbb{Z}_3	\mathbb{Z}_4	Estructura
D1	R_A	≈ 0	≈ 0	≈ 0	pprox 0	≈ 0
Heridas por						
choque	$R_{\rm U} = R_{\rm U/P} + R_{\rm U/T}$		≈ 0	≈ 0	pprox 0	pprox 0
eléctrico						
D2	R_{B}		0,170	0,003	0,001	0,174
Daño Físico	$R_{V} = R_{V/P} + R_{V/T}$		0,018	≈ 0	≈ 0	0,018
D3	R_{C}		0,017	0,006	0,001	0,024
Falla de	R_{M}		0,002	0,001	≈ 0	0,003
sistemas	$R_W = R_{W/P} + R_{W/T}$		0,002	0,001	≈ 0	0,003
internos	$R_Z = R_{Z/P} + R_{Z/T}$					
Total		≈ 0	≈ 0 0,209 0,011 0,002			
Ni	vel Tolerable	$R_1 \le R_T$: No se requiere protección contra el rayo			$R_T = 1$	

Solución c)

- Protección del edificio con un SPCR de Clase I ($P_B = 0.02$ incluyendo también $P_{EB} = 0.01$);
- Instalación de una protección coordinada de dispositivos de protección contra las sobretensiones DPSs en los sistemas de energía y telecomunicaciones por (2x) mejores que el nivel de protección contra el rayo I $(P_{DPS} = 0,002)$ en las zonas Z_2, Z_3, Z_4 ;
- Instalación en la zona Z_2 con un sistema automático de detección del fuego ($r_p = 0.2$ para la zona Z_2 solamente).
- Instalación en las zonas Z_3 y Z_4 con una pantalla enmallada con $w_m = 0,1$ m.

Utilizando esta solución los valores del riesgo de la Tabla E.33 cambiarán a los valores reducidos presentados en la Tabla E.36.

TABLA E.36 – Hospital: Riesgo R₁ para la estructura protegida de acuerdo a la solución c) (valores x 10⁻⁵)

Tipo de daño	Símbolo	\mathbf{Z}_1	\mathbf{Z}_2	\mathbb{Z}_3	\mathbb{Z}_4	Estructura
D1	R_A	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
Heridas por choque eléctrico	$R_{\rm U} = R_{\rm U/P} + R_{\rm U/T}$		≈ 0	≈ 0	≈ 0	≈ 0
D2	R_{B}		0,170	0,003	≈ 0	0,173
Daño Físico	$R_{V} = R_{V/P} + R_{V/T}$		0,018	≈ 0	≈ 0	0,018
D3	R_{C}		0,034	0,012	0,002	0,048
Falla de	R_{M}		≈ 0	≈ 0	≈ 0	≈ 0
sistemas	$R_{W} = R_{W/P} + R_{W/T}$		0,004	0,001	≈ 0	0,005
internos	$R_Z = R_{Z/P} + R_{Z/T}$					
Total		≈ 0 0,226 0,016 0,002				$R_1 = 0,244$
Ni	vel Tolerable	R ₁ < R _T : No se requiere protección contra el rayo				$R_T = 1$

Todas las soluciones reducen el valor del riesgo por debajo del nivel tolerable. La solución a adoptar depende del mejor compromiso entre los aspectos técnicos y económicos.

E.4.6 Riesgo R4 - Análisis de costo beneficio

Para las pérdidas económicas L4, el riesgo correspondiente R_4 puede ser evaluado de la misma manera que el precedente. Todos los parámetros requeridos para la evaluación de los componentes del riesgo están dados en las Tablas E.22 a E.29, donde los valores de las pérdidas L_X para las pérdidas económicas L4 son válidos solamente. Por lo tanto, solamente las zonas Z_2 , Z_3 y Z_4 son relevantes, mientras que la zona Z_1 es descartada (Esta podría ser relevante solamente en el caso de pérdidas de animales).

Los valores económicos (animales, edificio, sistemas internos y actividades) están dados antes en la Tabla E.25 para cada zona y en total.

A partir de los valores del riesgo R_4 y R'_4 y del valor total de la estructura c_t = USD 90 x 10^6 (Tabla E.25) el costo anual de las pérdidas CL = R^4 x ct para la estructura sin protección y el costo CRL = R'^4 x ct para la estructura protegida pueden ser calculados (véanse las ecuaciones (D.2) y (D.4)). Los resultados son mostrados en la Tabla E.37.

TABLA E.37 – Hospital: Costo de las pérdidas C_L (sin protección) y C_{RL} (protegido)

Protección	Riesgo R ₄ Protección Valores x 10 ⁻⁵						
	\mathbf{Z}_1	\mathbf{Z}_2	\mathbb{Z}_3	\mathbb{Z}_4	Estructura	C _L o C _{RL}	
Sin protección	-	53,2	8,7	1,6	63,5	57 185	
Solución a)	-	0,22	0,07	0,01	0,3	271	
Solución b)	-	0,18	0,02	0,005	0,21	190	
Solución c)	-	0,19	0,03	0,007	0,23	208	

Los valores de la tasa de interés, de amortización y del costo de mantenimiento relativo a las medidas de protección están dados en la Tabla E.38.

TABLA E.38 – Hospital: Tasas relativas a las medidas de protección

Tasa	Símbolo	Valor
Interés	i	0,04
Amortización	a	0,05
Mantenimiento	m	0,01

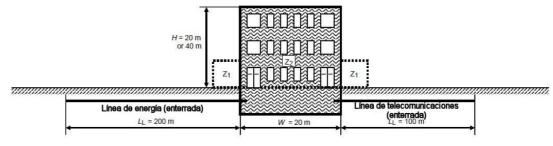
Una relación del costo C_P para las posibles medidas de protección y el costo anual C_{PM} de las medidas de protección adoptadas en la solución a), b) o c) están dados en la Tabla E.39 (Véasela ecuación (D.5)).

Descargado por Temporales (todotemporales@gmail.com)

TABLA E.39 – Hospital: Costo C_P y C_{PM} de las medidas de protección (valores en USD)

Medida de protección	Costo	C	Costo anual C _{PM} = C _P (i+a+n	n)
P	$\mathbf{C}_{\mathbf{P}}$	Solución a)	Solución b)	Solución c)
SPCR Clase I	100 000	10 000	10 000	10 000
Protección automática contra el fuego en la zona Z ₂	50 000	5 000	5 000	5 000
Pantalla de las zonas Z_3 y Z_4 (w = 0,5 m)	100 000	10 000		
Pantalla de las zonas Z_3 y Z_4 (w = 0,1 m)	110 000			11 000
Dispositivos de protección contra las sobretensiones DPS en el sistema de energía (1,5 x NPCR I)	20 000	2 000		
Dispositivos de protección contra las sobretensiones DPS en el sistema de energía (2 x NPCR I)	24 000			2 400
Dispositivos de protección contra las sobretensiones DPS en el sistema de energía (3 x NPCR I)	30 000		3 000	
Dispositivos de protección contra las sobretensiones DPS en el sistema de telecomunicaciones (1,5 x NPCR I)	10 000	1 000		
Dispositivos de protección contra las sobretensiones DPS en el sistema de telecomunicaciones (2 x NPCR I)	12 000			1 200
Dispositivos de protección contra las sobretensiones DPS en el sistema de telecomunicaciones (3 x NPCR I)	15 000		1 500	
Costo anual total C _{PM}		28 000	19 500	29 600

El ahorro anual en dinero S_M puede ser evaluado comparando el costo anual de las pérdidas para la estructura no protegida con la suma de los costos anuales de las pérdidas residuales CRL para la estructura protegida y el costo anual de las medidas de protección CPM. Los resultados para las soluciones a), b) y c) están dados en la Tabla E.40.


TABLA E.40 – Hospital: Ahorro anual en dinero (Valores en USD)

	Símbolo	Solución a)	Solución b)	Solución c)
Pérdidas para la estructura no protegida.	C_{L}	57 185	57 185	57 185
Pérdida residual para la estructura protegida	C_{RL}	271	190	208
Costo anual de la protección	C_{PM}	28 000	19 500	29 600
Ahorro anual $S_{M} = C_{L} - (C_{RL} + C_{PM})$	S _M	28 914	37 495	27 377

E.5 EDIFICIO DE DEPARTAMENTOS

Este caso compara diferente soluciones para la protección contra el rayo de un edificio de departamentos. Los resultados muestran que algunas soluciones pueden ser insuficientes, mientras que varias soluciones apropiadas pueden ser escogidas de diferentes combinaciones de medidas de protección.

Solamente el riego R_1 la pérdida de vidas humanas (L1) con los componentes de riesgo R_A , R_B , R_U y R_V (de acuerdo con la Tabla 2) será determinado y comparado con el valor de riesgo tolerable $R_T = 10^{-5}$ (de acuerdo con la Tabla 4). La evaluación económica no es requerida, por lo tanto el riego R_4 para las pérdidas económicas (L4) no es considerado.

IEC 2645/10

Leyenda:

 Z_1 : Exterior Z_2 : Interior

FIGURA E.4 – Edificio de departamentos

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados

E.5.1 Datos relevantes y características

El edificio de departamentos está localizado en terreno plano sin estructuras vecinas. La densidad de descargas de rayos en N_G = 4 descargas por km^2 por año. En el edificio viven 200 personas. Este es igualmente el número total de personas a tomar en cuenta, porque se asume que no hay personas en el exterior del edificio durante una tormenta.

Los datos relativos al edificio y a sus alrededores están dados en la Tabla E.41.

Los datos de las líneas entrantes y sus sistemas internos conectados están dados para la línea de energía en la Tabla E.42 y para la línea de telecomunicaciones en la Tabla E.43.

TABLA E.41 – Edificio de departamentos: Medio ambiente y características de la estructura

Parámetro de entrada	Comentarios	Símbolo	Valor	Referencia
Densidad de descargas a tierra (1/km²/año)		N_{G}	4,0	
Dimensiones de la estructura (m)	H = 20 o 40 (véase la Tabla E.45)	L, W	30, 20	
Factor de localización de la estructura	Estructura Aislada	C_D	1	Tabla A.1
SPCR	Variable (véase la Tabla E.45)	P_{B}	-	Tabla B.2
Enlace equipotencial	Ninguno	P_{EB}	1	Tabla B.7
Apantallamiento externo espacial de la estructura	Ninguno	K_{S1}	1	Ecuación (B.5)

TABLA E.42 – Edificio de departamentos: Línea de energía

Parámetro de entrada	Comentario	Símbolo	Valor	Referencia	
Longitud (m)		L_L	200		
Factor de instalación	Enterrada	C _I	0,5	Tabla A.2	
Factor de tipo de línea	Línea de BT	C_{T}	1	Tabla A.3	
Factor ambiental de la línea	Suburbano	CE	0,5	Tabla A.4	
Apantallamiento de la línea (Ω/km)	Línea sin pantalla	R_S	-	Tabla B.8	
D	NT'	$C_{ t LD}$	1	Tabla B.4	
Pantalla, puesta a tierra, aislamiento	Ninguna	CLI	1		
Estructura adyacente (m)	Ninguna	L_{J}, W_{J}, H_{J}	-		
Factor de localización de la estructura adyacente	Ninguno	C_{DJ}	-	Tabla A.1	

TABLA E.42 – Edificio de departamentos: Línea de energía (continuación)

Parámetro de entrada	Observación	Símbolo	Valor	Referencia
Tensión soportada del sistema interno (kV)		U_{W}	2,5	
	Parámetros resultantes	K_{S4}	0,4	Ecuación (B.7)
		P_{LD}	1	Tabla B.8
		P_{LI}	0,3	Tabla B.9

FIGURA E.43 – Edificio de departamentos: Línea de telecomunicaciones

Parámetro de entrada	Observación	Símbolo	Valor	Referencia	
Longitud (m)		L_{L}	100		
Factor de instalación	Enterrada	C_1	0,5	Tabla A.2	
Factor de tipo de línea	Línea de comunicaciones	C_{T}	1	Tabla A.3	
Factor ambiental de la línea	Suburbana	CE	0,5	Tabla A.4	
Apantallamiento de la línea (Ω/km)	Línea sin pantalla	Rs	-	Tabla B.8	
Dentalla puesta a tierra gislamiento	NT.	$C_{ t LD}$	1	Tabla B.4	
Pantalla, puesta a tierra, aislamiento	Ninguna	CLI	1		
Estructura adyacente	Ninguna	L_{J},W_{J},H_{J}	-		
Factor de localización de la estructura adyacente	Ninguna	C_{DJ}	-	Tabla A.1	
Tensión soportada del sistema interno (kV)		U_{W}	1,5		
		K _{S4}	0,67	Ecuación (B.7)	
	Parámetros resultantes	P _{LD}	1	Tabla B.8	
		P _{LI}	0,5	Tabla B.9	

E.5.2 Definición de las zonas en el edificio de departamentos

Las siguientes zonas son definidas:

- Z₁ (Exterior del edificio)
- Z₂ (Interior del edificio)

Para la zona Z_1 se asume que no hay personas en el exterior del edificio. Por lo tanto el riesgo de choque para las personas $R_A = 0$. Debido a que R_A es la única componente del riesgo para el exterior del edificio, la zona Z_1 puede ser despreciada completamente.

La zona Z₂ es definida, tomando en cuenta lo siguiente:

- La estructura es clasificada como un "edificio civil";

- Existen los dos sistemas internos en esta zona (de energía y de telecomunicaciones);
- No existe pantalla espacial;
- La estructura es un solo compartimiento a prueba de fuego;
- Las pérdidas se asumen que corresponden a los valores promedio típicos de la Tabla C.1.

Los factores resultantes válidos para la zona Z₂ son presentados en la Tabla E.44.

TABLA E.44 – Edificio de departamentos: Factores válidos para la Zona Z₂ (dentro del edificio)

Parámetro de entrada		Comentario	Símbolo	Valor	Referencia
Tipo de piso		Madera	r_{t}	10-5	Tabla C.3
Protección contra el choque eléctrico (descarga en la estructura)		Ninguna	P_{TA}	1	Tabla B.1
Protección contra el choque eléctrico (descarga en la línea)		Ninguna	P _{TU}	1	Tabla B.6
Riesgo de inc	endio	Variable (véase la Tabla E.45)	\mathbf{r}_{f}	-	Tabla C.5
Protección co	ontra el fuego	Variable (véase la Tabla E.45)	r_p	1	Tabla C.4
Pantalla espa	cial interna	Ninguna	K_{S2}	1	Ecuación (B.6)
Energía	Alambrado interno	Sin pantalla (lazo de conductores en la misma canalización)	K_{S3}	0,2	Tabla B.5
	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
Telecomuni caciones	Alambrado interno	Sin pantalla (lazo grandes mayores 10 m²)	K_{S3}	1	Tabla B.5
caciones	DPS coordinados	Ninguna	P_{DPS}	1	Tabla B.3
L1: Pérdida de vidas humanas		Peligro especial: ninguno	h_Z	1	Tabla C.6
		D1: Debido a la tensión de contacto y tensión de paso	L_{T}	10-2	Tabla C.2
		D2: debido al daño físico	L_{F}	10-1	
Factor por personas en la zona		$n_z/n_t \times t_z/8760 = 200/200 \times 8760/8760$	-	1	

E.5.3 Riesgo R1 – Selección de las medidas de protección

Los valores del riesgo R1 y las medidas de protección seleccionadas para reducir el riesgo al nivel tolerable RT = 10^{-5} están dados es la Tabla E.45, dependiendo de los siguientes parámetros:

- Altura del edificio H;
- Factor de reducción r_f del riesgo de fuego;
- Factor de reducción r_p reduciendo las consecuencias del fuego;
- Probabilidad PB en función de la Clase de SPCR adoptado.

TABLA E.45 – Edificio de departamentos: Riesgo R₁ para el edificio de departamentos en función de las medidas de protección

Altura H m	Riesgo de fuego		SPCR		Protección contra el fuego		Riesgo R ₁	Estructura
	Tipo	$r_{\rm f}$	Clase	P_{B}	Tipo	r_p	Valores x 10 ⁻⁵	$\begin{array}{c} protegida \\ R_1 \leq R_T \end{array}$
	Bajo	0,001	Ninguno	1	Ninguno	1	0,837	Si
		0,01	Ninguno	1	Ninguno	1	8,364	No
	Ordinario		III	0,1	Ninguno	1	0,776	SI
20			IV	0,2	Manual	0,5	0,747	Si
20	Alto		Ninguno	1	Ninguno	1	83,64	No
		0,1	II	0,05	Automático	0,2	0,764	Si
			I	0,02	Ninguno	1	1,553	No
			I	0,02	Manual	0,5	0,776	Si
40	Bajo	0,001	Ninguno	1	Ninguno	1	2,436	No
			Ninguno	1	Automático	0,2	0,489	Si
			IV	0,2	Ninguno	1	0,469	Si
	Ordinario 0,01		Ninguno	1	Ninguno	1	24,34	No
		0,01	IV	0,2	Automático	0,2	0,938	SI
			I	0,02	Ninguno	1	0,475	Si
	Alto	0,1	Ninguno	1	Ninguno	1	243,4	No
		0,1	I	0,02	Automático	0,2	0,949	Si

BIBLIOGRAFÍA

- [1] IEC 61000-4-5:1995 Compatibilidad electromagnética (CEM). Parte 4: Técnicas de ensayo y medida. Sección 5: Ensayos de inmunidad a las ondas de choque.
- [2] IEC 60079-10-1, Atmosferas explosivas Parte 10-1: Clasificación de las áreas Atmosferas con gases explosivos
- [3] IEC 60079-10-2, Atmosferas explosivas Parte 10-2: Clasificación de las áreas Atmosferas con polvo combustible
- [4] IEC 60664-1:2007 Coordinación de aislamiento de los equipos en los sistemas de baja tensión. Parte 1: Principios, requerimientos y ensayos.
- [5] IEC 60050-426:2008, Vocabulario Electrotécnico Internacional Parte 426: Equipo para atmosferas explosivas
- [6] Diario Oficial de la Unión Europea, 1994/28/02, no. C62/63
- [7] ITU-T Recomendación K.47, Protección de las líneas de telecomunicaciones utilizando conductores metálicos contra las descargas directas del rayo
- [8] NUCCI C. A., Sobretensiones inducidas por descargas del rayo sobre líneas de trasmisión aéreas. Parte I: Modelos de corriente de descarga de retorno con corriente de canal-base especificada para la evaluación de los campos electromagnéticos de descarga de retorno. CIGRE Electra N° 161 (Agosto 1995)
- [9] NUCCI C. A., Sobretensiones inducidas por descargas del rayo sobre líneas de trasmisión aéreas. Parte II: Modelos de acoplamiento para la evaluación de tensiones inducidas. CIGRE Electra N° 162 (Octubre 1995)
- [10] IEC/TR 62066:2002, Sobretensiones transitorias y protección contra transitorios en sistemas de energía de corriente alterna de baja tensión Información general básica.
- [11] ITU-T Recomendación K.46, Protección de líneas de telecomunicaciones usando conductores simétricos metálicos contra transitorios inducidos por el rayo.

IEC 2010 - $\ensuremath{\mathbb{O}}$ INACAL 2015 - Todos los derechos son reservados